Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

Non-thermal plasma modulates cellular markers associated with immunogenicity in a model of latent HIV-1 infection

2021, Mohamed, Hager, Clemen, Ramona, Freund, Eric, Lackmann, Jan-Wilm, Wende, Kristian, Connors, Jennifer, Haddad, Elias K., Dampier, Will, Wigdahl, Brian, Miller, Vandana, Bekeschus, Sander, Krebs, Fred C., Kashanchi, Fatah

Effective control of infection by human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS), requires continuous and life-long use of anti-retroviral therapy (ART) by people living with HIV-1 (PLWH). In the absence of ART, HIV-1 reemergence from latently infected cells is ineffectively suppressed due to suboptimal innate and cytotoxic T lymphocyte responses. However, ART-free control of HIV-1 infection may be possible if the inherent immunological deficiencies can be reversed or restored. Herein we present a novel approach for modulating the immune response to HIV-1 that involves the use of non-thermal plasma (NTP), which is an ionized gas containing various reactive oxygen and nitrogen species (RONS). J-Lat cells were used as a model of latent HIV-1 infection to assess the effects of NTP application on viral latency and the expression of pro-phagocytic and pro-chemotactic damage-associated molecular patterns (DAMPs). Exposure of J-Lat cells to NTP resulted in stimulation of HIV-1 gene expression, indicating a role in latency reversal, a necessary first step in inducing adaptive immune responses to viral antigens. This was accompanied by the release of pro-inflammatory cytokines and chemokines including interleukin-1β (IL-1β) and interferon-γ (IFN-γ); the display of pro-phagocytic markers calreticulin (CRT), heat shock proteins (HSP) 70 and 90; and a correlated increase in macrophage phagocytosis of NTP-exposed J-Lat cells. In addition, modulation of surface molecules that promote or inhibit antigen presentation was also observed, along with an altered array of displayed peptides on MHC I, further suggesting methods by which NTP may modify recognition and targeting of cells in latent HIV-1 infection. These studies represent early progress toward an effective NTP-based ex vivo immunotherapy to resolve the dysfunctions of the immune system that enable HIV-1 persistence in PLWH.

Loading...
Thumbnail Image
Item

Application of new lysine-based peptide dendrimers D3K2 and D3G2 for gene delivery: Specific cytotoxicity to cancer cells and transfection in vitro

2020, Gorzkiewicz, Michal, Konopka, Malgorzata, Janaszewska, Anna, Tarasenko, Irina I., Sheveleva, Nadezhda N., Gajek, Arkadiusz, Neelov, Igor M., Klajnert-Maculewicz, Barbara

In order to enhance intracellular uptake and accumulation of therapeutic nucleic acids for improved gene therapy methods, numerous delivery vectors have been elaborated. Based on their origin, gene carriers are generally classified as viral or non-viral vectors. Due to their significantly reduced immunogenicity and highly optimized methods of synthesis, nanoparticles (especially those imitating natural biomolecules) constitute a promising alternative for virus-based delivery devices. Thus, we set out to develop innovative peptide dendrimers for clinical application as transfection agents and gene carriers. In the present work we describe the synthesis of two novel lysine-based dendritic macromolecules (D3K2 and D3G2) and their initial characterization for cytotoxicity/genotoxicity and transfection potential in two human cell line models: cervix adenocarcinoma (HeLa) and microvascular endothelial (HMEC-1). This approach allowed us to identify more cationic D3K2 as potent delivery agent, being able to increase intracellular accumulation of large nucleic acid molecules such as plasmids. Moreover, the dendrimers exhibited specific cytotoxicity towards cancer cell line without showing significant toxic effects on normal cells. These observations are promising prognosis for future clinical application of this type of nanoparticles. © 2019 The Authors

Loading...
Thumbnail Image
Item

Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study

2021, Zhao, Qi, Guo, Yuming, Ye, Tingting, Gasparrini, Antonio, Tong, Shilu, Overcenco, Ala, Urban, Aleš, Schneider, Alexandra, Entezari, Alireza, Vicedo-Cabrera, Ana Maria, Zanobetti, Antonella, Analitis, Antonis, Zeka, Ariana, Tobias, Aurelio, Nunes, Baltazar, Alahmad, Barrak, Armstrong, Ben, Forsberg, Bertil, Pan, Shih-Chun, Íñiguez, Carmen, Ameling, Caroline, De la Cruz Valencia, César, Åström, Christofer, Houthuijs, Danny, Dung, Do Van, Royé, Dominic, Indermitte, Ene, Lavigne, Eric, Mayvaneh, Fatemeh, Acquaotta, Fiorella, de'Donato, Francesca, Di Ruscio, Francesco, Sera, Francesco, Carrasco-Escobar, Gabriel, Kan, Haidong, Orru, Hans, Kim, Ho, Holobaca, Iulian-Horia, Kyselý, Jan, Madureira, Joana, Schwartz, Joel, Jaakkola, Jouni J. K., Katsouyanni, Klea, Hurtado Diaz, Magali, Ragettli, Martina S., Hashizume, Masahiro, Pascal, Mathilde, de Sousa Zanotti Stagliorio Coélho, Micheline, Valdés Ortega, Nicolás, Ryti, Niilo, Scovronick, Noah, Michelozzi, Paola, Matus Correa, Patricia, Goodman, Patrick, Nascimento Saldiva, Paulo Hilario, Abrutzky, Rosana, Osorio, Samuel, Rao, Shilpa, Fratianni, Simona, Dang, Tran Ngoc, Colistro, Valentina, Huber, Veronika, Lee, Whanhee, Seposo, Xerxes, Honda, Yasushi, Guo, Yue Leon, Bell, Michelle L., Li, Shanshan

Background: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. Methods: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5° × 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature–mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature–mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. Findings: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967–5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58–11·07) of all deaths (8·52% [6·19–10·47] were cold-related and 0·91% [0·56–1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60–87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000–03 to 2016–19, the global cold-related excess death ratio changed by −0·51 percentage points (95% eCI −0·61 to −0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13–0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe. Interpretation: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios. Funding: Australian Research Council and the Australian National Health and Medical Research Council. © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license

Loading...
Thumbnail Image
Item

Breast Cancer Stem Cell–Derived Tumors Escape from γδ T-cell Immunosurveillance In Vivo by Modulating γδ T-cell Ligands

2023, Raute, Katrin, Strietz, Juliane, Parigiani, Maria Alejandra, Andrieux, Geoffroy, Thomas, Oliver S., Kistner, Klaus M., Zintchenko, Marina, Aichele, Peter, Hofmann, Maike, Zhou, Houjiang, Weber, Wilfried, Boerries, Melanie, Swamy, Mahima, Maurer, Jochen, Minguet, Susana

There are no targeted therapies for patients with triple-negative breast cancer (TNBC). TNBC is enriched in breast cancer stem cells (BCSC), which play a key role in metastasis, chemoresistance, relapse, and mortality. γδ T cells hold great potential in immunotherapy against cancer and might provide an approach to therapeutically target TNBC. γδ T cells are commonly observed to infiltrate solid tumors and have an extensive repertoire of tumor-sensing mechanisms, recognizing stress-induced molecules and phosphoantigens (pAgs) on transformed cells. Herein, we show that patient-derived triple-negative BCSCs are efficiently recognized and killed by ex vivo expanded γδ T cells from healthy donors. Orthotopically xenografted BCSCs, however, were refractory to γ δ T-cell immunotherapy. We unraveled concerted differentiation and immune escape mechanisms: xenografted BCSCs lost stemness, expression of γ δ T-cell ligands, adhesion molecules, and pAgs, thereby evading immune recognition by γ δ T cells. Indeed, neither promigratory engineered γ δ T cells, nor anti–PD-1 checkpoint blockade, significantly prolonged overall survival of tumor-bearing mice. BCSC immune escape was independent of the immune pressure exerted by the γ δ T cells and could be pharmacologically reverted by zoledronate or IFNα treatment. These results pave the way for novel combinatorial immunotherapies for TNBC.

Loading...
Thumbnail Image
Item

Targeted delivery of functionalized PLGA nanoparticles to macrophages by complexation with the yeast Saccharomyces cerevisiae

2020, Kiefer, R., Jurisic, M., Dahlem, C., Koch, M., Schmitt, M.J., Kiemer, A.K., Schneider, M., Breinig, F.

Nanoparticles (NPs) are able to deliver a variety of substances into eukaryotic cells. However, their usage is often hampered by a lack of specificity, leading to the undesired uptake of NPs by virtually all cell types. In contrast to this, yeast is known to be specifically taken up into immune cells after entering the body. Therefore, we investigated the interaction of biodegradable surface-modified poly(lactic-co-glycolic acid) (PLGA) particles with yeast cells to overcome the unspecificity of the particulate carriers. Cells of different Saccharomyces cerevisiae strains were characterized regarding their interaction with PLGA-NPs under isotonic and hypotonic conditions. The particles were shown to efficiently interact with yeast cells leading to stable NP/yeast-complexes allowing to associate or even internalize compounds. Notably, applying those complexes to a coculture model of HeLa cells and macrophages, the macrophages were specifically targeted. This novel nano-in-micro carrier system suggests itself as a promising tool for the delivery of biologically active agents into phagocytic cells combining specificity and efficiency.

Loading...
Thumbnail Image
Item

Exogenous supply of Hsp47 triggers fibrillar collagen deposition in skin cell cultures in vitro

2020, Khan, E.S., Sankaran, S., Llontop, L., Del Campo, A.

Background: Collagen is a structural protein that provides mechanical stability and defined architectures to skin. In collagen-based skin disorders this stability is lost, either due to mutations in collagens or in the chaperones involved in collagen assembly. This leads to chronic wounds, skin fragility, and blistering. Existing approaches to treat such conditions rely on administration of small molecules to simulate collagen production, like 4-phenylbutyrate (4-PBA) or growth factors like TGF-β. However, these molecules are not specific for collagen synthesis, and result in unsolicited side effects. Hsp47 is a collagen-specific chaperone with a major role in collagen biosynthesis. Expression levels of Hsp47 correlate with collagen deposition. This article explores the stimulation of collagen deposition by exogenously supplied Hsp47 (collagen specific chaperone) to skin cells, including specific collagen subtypes quantification. Results: Here we quantify the collagen deposition level and the types of deposited collagens after Hsp47 stimulation in different in vitro cultures of cells from human skin tissue (fibroblasts NHDF, keratinocytes HaCat and endothelial cells HDMEC) and mouse fibroblasts (L929 and MEF). We find upregulated deposition of fibrillar collagen subtypes I, III and V after Hsp47 delivery. Network collagen IV deposition was enhanced in HaCat and HDMECs, while fibril-associated collagen XII was not affected by the increased intracellular Hsp47 levels. The deposition levels of fibrillar collagen were cell-dependent i.e. Hsp47-stimulated fibroblasts deposited significantly higher amount of fibrillar collagen than Hsp47-stimulated HaCat and HDMECs. Conclusions: A 3-fold enhancement of collagen deposition was observed in fibroblasts upon repeated dosage of Hsp47 within the first 6 days of culture. Our results provide fundamental understanding towards the idea of using Hsp47 as therapeutic protein to treat collagen disorders.

Loading...
Thumbnail Image
Item

Accurate in vivo tumor detection using plasmonic-enhanced shifted-excitation Raman difference spectroscopy (SERDS)

2021, Strobbia, Pietro, Cupil-Garcia, Vanessa, Crawford, Bridget M., Fales, Andrew M., Pfefer, T. Joshua, Liu, Yang, Maiwald, Martin, Sumpf, Bernd, Vo-Dinh, Tuan

For the majority of cancer patients, surgery is the primary method of treatment. In these cases, accurately removing the entire tumor without harming surrounding tissue is critical; however, due to the lack of intraoperative imaging techniques, surgeons rely on visual and physical inspection to identify tumors. Surface-enhanced Raman scattering (SERS) is emerging as a non-invasive optical alternative for intraoperative tumor identification, with high accuracy and stability. However, Raman detection requires dark rooms to work, which is not consistent with surgical settings. Methods: Herein, we used SERS nanoprobes combined with shifted-excitation Raman difference spectroscopy (SERDS) detection, to accurately detect tumors in xenograft murine model. Results: We demonstrate for the first time the use of SERDS for in vivo tumor detection in a murine model under ambient light conditions. We compare traditional Raman detection with SERDS, showing that our method can improve sensitivity and accuracy for this task. Conclusion: Our results show that this method can be used to improve the accuracy and robustness of in vivo Raman/SERS biomedical application, aiding the process of clinical translation of these technologies. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Loading...
Thumbnail Image
Item

Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities

2021, Meng, Xia, Liu, Cong, Chen, Renjie, Sera, Francesco, Vicedo-Cabrera, Ana Maria, Milojevic, Ai, Guo, Yuming, Tong, Shilu, Coelho, Micheline de Sousa Zanotti Stagliorio, Saldiva, Paulo Hilario Nascimento, Lavigne, Eric, Correa, Patricia Matus, Ortega, Nicolas Valdes, Osorio, Samuel, Garcia, null, Kyselý, Jan, Urban, Aleš, Orru, Hans, Maasikmets, Marek, Jaakkola, Jouni J. K., Ryti, Niilo, Huber, Veronika, Schneider, Alexandra, Katsouyanni, Klea, Analitis, Antonis, Hashizume, Masahiro, Honda, Yasushi, Ng, Chris Fook Sheng, Nunes, Baltazar, Teixeira, João Paulo, Holobaca, Iulian Horia, Fratianni, Simona, Kim, Ho, Tobias, Aurelio, Íñiguez, Carmen, Forsberg, Bertil, Åström, Christofer, Ragettli, Martina S., Guo, Yue-Liang Leon, Pan, Shih-Chun, Li, Shanshan, Bell, Michelle L., Zanobetti, Antonella, Schwartz, Joel, Wu, Tangchun, Gasparrini, Antonio, Kan, Haidong

Objective To evaluate the short term associations between nitrogen dioxide (NO2) and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide, using a uniform analytical protocol. Design Two stage, time series approach, with overdispersed generalised linear models and multilevel meta-analysis. Setting 398 cities in 22 low to high income countries/regions. Main outcome measures Daily deaths from total (62.8 million), cardiovascular (19.7 million), and respiratory (5.5 million) causes between 1973 and 2018. Results On average, a 10 μg/m3 increase in NO2 concentration on lag 1 day (previous day) was associated with 0.46% (95% confidence interval 0.36% to 0.57%), 0.37% (0.22% to 0.51%), and 0.47% (0.21% to 0.72%) increases in total, cardiovascular, and respiratory mortality, respectively. These associations remained robust after adjusting for co-pollutants (particulate matter with aerodynamic diameter ≤10 μm or ≤2.5 μm (PM10 and PM2.5, respectively), ozone, sulfur dioxide, and carbon monoxide). The pooled concentration-response curves for all three causes were almost linear without discernible thresholds. The proportion of deaths attributable to NO2 concentration above the counterfactual zero level was 1.23% (95% confidence interval 0.96% to 1.51%) across the 398 cities. Conclusions This multilocation study provides key evidence on the independent and linear associations between short term exposure to NO2 and increased risk of total, cardiovascular, and respiratory mortality, suggesting that health benefits would be achieved by tightening the guidelines and regulatory limits of NO2.

Loading...
Thumbnail Image
Item

A network-based microfoundation of Granovetter’s threshold model for social tipping

2020, Wiedermann, Marc, Smith, E. Keith, Heitzig, Jobst, Donges, Jonathan F.

Social tipping, where minorities trigger larger populations to engage in collective action, has been suggested as one key aspect in addressing contemporary global challenges. Here, we refine Granovetter’s widely acknowledged theoretical threshold model of collective behavior as a numerical modelling tool for understanding social tipping processes and resolve issues that so far have hindered such applications. Based on real-world observations and social movement theory, we group the population into certain or potential actors, such that – in contrast to its original formulation – the model predicts non-trivial final shares of acting individuals. Then, we use a network cascade model to explain and analytically derive that previously hypothesized broad threshold distributions emerge if individuals become active via social interaction. Thus, through intuitive parameters and low dimensionality our refined model is adaptable to explain the likelihood of engaging in collective behavior where social-tipping-like processes emerge as saddle-node bifurcations and hysteresis. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Self-assembly of Co/Pt stripes with current-induced domain wall motion towards 3D racetrack devices

2024, Fedorov, Pavel, Soldatov, Ivan, Neu, Volker, Schäfer, Rudolf, Schmidt, Oliver G., Karnaushenko, Daniil

Modification of the magnetic properties under the induced strain and curvature is a promising avenue to build three-dimensional magnetic devices, based on the domain wall motion. So far, most of the studies with 3D magnetic structures were performed in the helixes and nanowires, mainly with stationary domain walls. In this study, we demonstrate the impact of 3D geometry, strain and curvature on the current-induced domain wall motion and spin-orbital torque efficiency in the heterostructure, realized via a self-assembly rolling technique on a polymeric platform. We introduce a complete 3D memory unit with write, read and store functionality, all based on the field-free domain wall motion. Additionally, we conducted a comparative analysis between 2D and 3D structures, particularly addressing the influence of heat during the electric current pulse sequences. Finally, we demonstrated a remarkable increase of 30% in spin-torque efficiency in 3D configuration.