Search Results

Now showing 1 - 6 of 6
  • Item
    Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization
    (Katlenburg-Lindau : European Geosciences Union, 2021) Lee, Chuan Ping; Surdu, Mihnea; Bell, David M.; Lamkaddam, Houssni; Wang, Mingyi; Ataei, Farnoush; Hofbauer, Victoria; Lopez, Brandon; Donahue, Neil M.; Dommen, Josef; Prevot, Andre S. H.; Slowik, Jay G.; Wang, Dongyu; Baltensperger, Urs; El Haddad, Imad
    Extractive electrospray ionization (EESI) has been a well-known technique for high-throughput online molecular characterization of chemical reaction products and intermediates, detection of native biomolecules, in vivo metabolomics, and environmental monitoring with negligible thermal and ionization-induced fragmentation for over two decades. However, the EESI extraction mechanism remains uncertain. Prior studies disagree on whether particles between 20 and 400nm diameter are fully extracted or if the extraction is limited to the surface layer. Here, we examined the analyte extraction mechanism by assessing the influence of particle size and coating thickness on the detection of the molecules therein. We find that particles are extracted fully: organics-coated NH4NO3 particles with a fixed core volume (156 and 226nm in diameter without coating) showed constant EESI signals for NH4NO3 independent of the shell coating thickness, while the signals of the secondary organic molecules comprising the shell varied proportionally to the shell volume. We also found that the EESI sensitivity exhibited a strong size dependence, with an increase in sensitivity by 1-3 orders of magnitude as particle size decreased from 300 to 30nm. This dependence varied with the electrospray (ES) droplet size, the particle size and the residence time for coagulation in the EESI inlet, suggesting that the EESI sensitivity was influenced by the coagulation coefficient between particles and ES droplets. Overall, our results indicate that, in the EESI, particles are fully extracted by the ES droplets regardless of the chemical composition, when they are collected by the ES droplets. However, their coalescence is not complete and depends strongly on their size. This size dependence is especially relevant when EESI is used to probe size-varying particles as is the case in aerosol formation and growth studies with size ranges below 100nm. © 2021 The Author(s).
  • Item
    Ground-based noontime D-region electron density climatology over northern Norway
    (Katlenburg-Lindau : EGU, 2023) Renkwitz, Toralf; Sivakandan, Mani; Jaen, Juliana; Singer, Werner
    The bottom part of the Earth's ionosphere is the so-called D region, which is typically less dense than the upper regions. Despite the comparably lower electron density, the ionization state of the D region has a significant influence on signal absorption for propagating lower to medium radio frequencies. We present local noon climatologies of electron densities in the upper middle atmosphere (50-90km) at high latitudes as observed by an active radar experiment. The radar measurements cover 9 years (2014-2022) from the solar maximum of cycle 24 to the beginning of cycle 25. Reliable electron densities are derived by employing signal processing, applying interferometry methods, and applying the Faraday-International Reference Ionosphere (FIRI) model. For all years a consistent spring-fall asymmetry of the electron density pattern with a gradual increase during summer as well as a sharp decrease at the beginning of October was found. These findings are consistent with very low frequency (VLF) studies showing equivalent signatures for nearby propagation paths. It is suggested that the meridional circulation associated with downwelling in winter could cause enhanced electron densities through NO transport. However, this mechanism can not explain the reduction in electron density in early October.
  • Item
    Interatomic and Intermolecular Coulombic Decay
    (Washington, DC : ACS Publ., 2020) Jahnke, Till; Hergenhahn, Uwe; Winter, Bernd; Dörner, Reinhard; Frühling, Ulrike; Demekhin, Philipp V.; Gokhberg, Kirill; Cederbaum, Lorenz S.; Ehresmann, Arno; Knie, André; Dreuw, Andreas
    Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later. Since then, a number of fundamental and applied aspects have been studied in this quickly growing field of research. This review provides an introduction to ICD and draws the connection to related energy transfer and ionization processes. The theoretical approaches for the description of ICD as well as the experimental techniques developed and employed for its investigation are described. The existing body of literature on experimental and theoretical studies of ICD processes in different atomic and molecular systems is reviewed. © 2020 American Chemical Society
  • Item
    High-order parametric generation of coherent XUV radiation
    (Washington, DC : Soc., 2021) Hort, O.; Dubrouil, A.; Khokhlova, M.A.; Descamps, D.; Petit, S.; Burgy, F.; Mével, E.; Constant, E.; Strelkov, V.V.
    Extreme ultraviolet (XUV) radiation finds numerous applications in spectroscopy. When the XUV light is generated via high-order harmonic generation (HHG), it may be produced in the form of attosecond pulses, allowing access to unprecedented ultrafast phenomena. However, the HHG efficiency remains limited. Here we present an observation of a new regime of coherent XUV emission which has a potential to provide higher XUV intensity, vital for applications. We explain the process by high-order parametric generation, involving the combined emission of THz and XUV photons, where the phase matching is very robust against ionization. This introduces a way to use higher-energy driving pulses, thus generating more XUV photons.
  • Item
    Probing multiphoton light-induced molecular potentials
    ([London] : Nature Publishing Group UK, 2020) Kübel, M.; Spanner, M.; Dube, Z.; Naumov, A.Yu.; Chelkowski, S.; Bandrauk, A.D.; Vrakking, M.J.J.; Corkum, P.B.; Villeneuve, D.M.; Staudte, A.
    The strong coupling between intense laser fields and valence electrons in molecules causes distortions of the potential energy hypersurfaces which determine the motion of the nuclei and influence possible reaction pathways. The coupling strength varies with the angle between the light electric field and valence orbital, and thereby adds another dimension to the effective molecular potential energy surface, leading to the emergence of light-induced conical intersections. Here, we demonstrate that multiphoton couplings can give rise to complex light-induced potential energy surfaces that govern molecular behavior. In the laser-induced dissociation of H2+, the simplest of molecules, we measure a strongly modulated angular distribution of protons which has escaped prior observation. Using two-color Floquet theory, we show that the modulations result from ultrafast dynamics on light-induced molecular potentials. These potentials are shaped by the amplitude, duration and phase of the dressing fields, allowing for manipulating the dissociation dynamics of small molecules.
  • Item
    Femtosecond Field‐Driven On‐Chip Unidirectional Electronic Currents in Nonadiabatic Tunneling Regime
    (Weinheim : Wiley VCH, 2021) Shi, Liping; Babushkin, Ihar; Husakou, Anton; Melchert, Oliver; Frank, Bettina; Yi, Juemin; Wetzel, Gustav; Demircan, Ayhan; Lienau, Christoph; Giessen, Harald; Ivanov, Misha; Morgner, Uwe; Kovacev, Milutin
    Recently, asymmetric plasmonic nanojunctions have shown promise as on-chip electronic devices to convert femtosecond optical pulses to current bursts, with a bandwidth of multi-terahertz scale, although yet at low temperatures and pressures. Such nanoscale devices are of great interest for novel ultrafast electronics and opto-electronic applications. Here, the device is operated in air and at room temperature, revealing the mechanisms of photoemission from plasmonic nanojunctions, and the fundamental limitations on the speed of optical-to-electronic conversion. Inter-cycle interference of coherent electronic wavepackets results in a complex energy electron distribution and birth of multiphoton effects. This energy structure, as well as reshaping of the wavepackets during their propagation from one tip to the other, determine the ultrafast dynamics of the current. It is shown that, up to some level of approximation, the electron flight time is well-determined by the mean ponderomotive velocity in the driving field.