Search Results

Now showing 1 - 10 of 461
  • Item
    High-quality MgB2 nanocrystals synthesized by using modified amorphous nano-boron powders: Study of defect structures and superconductivity properties
    (College Park, MD : American Institute of Physics, 2019) Bateni, A.; Erdem, E.; Häßler, W.; Somer, M.
    Nano sized magnesium diboride (MgB2) samples were synthesized using various high-quality nano-B precursor powders. The microscopic defect structures of MgB2 samples were systematically investigated using X-ray powder diffraction, Raman, resistivity measurements and electron paramagnetic resonance spectroscopy. A significant deviation in the critical temperature Tc was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra. Scanning electron microscopy analysis demonstrate uniform and ultrafine morphology for the modified MgB2. Defect center in particular Mg vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications.
  • Item
    Resistive switching in polycrystalline YMnO3 thin films
    (New York, NY : American Inst. of Physics, 2014) Bogusz, A.; Müller, A.D.; Blaschke, D.; Skorupa, I.; Bürger, D.; Scholz, A.; Schmidt, O.G.; Schmidt, H.
    We report a unipolar, nonvolatile resistive switching in polycrystalline YMnO3 thin films grown by pulsed laser deposition and sandwiched between Au top and Ti/Pt bottom electrodes. The ratio of the resistance in the OFF and ON state is larger than 103. The observed phenomena can be attributed to the formation and rupture of conductive filaments within the multiferroic YMnO3 film. The generation of conductive paths under applied electric field is discussed in terms of the presence of grain boundaries and charged domain walls inherently formed in hexagonal YMnO3. Our findings suggest that engineering of the ferroelectric domains might be a promising route for designing and fabrication of novel resistive switching devices.
  • Item
    Self-Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitors
    (Chichester : John Wiley and Sons Ltd, 2019) Li, F.; Wang, J.; Liu, L.; Qu, J.; Li, Y.; Bandari, V.K.; Karnaushenko, D.; Becker, C.; Faghih, M.; Kang, T.; Baunack, S.; Zhu, M.; Zhu, F.; Schmidt, O.G.
    The rapid development of microelectronics has equally rapidly increased the demand for miniaturized energy storage devices. On-chip microsupercapacitors (MSCs), as promising power candidates, possess great potential to complement or replace electrolytic capacitors and microbatteries in various applications. However, the areal capacities and energy densities of the planar MSCs are commonly limited by the low voltage window, the thin layer of the electrode materials and complex fabrication processes. Here, a new-type three-dimensional (3D) tubular asymmetric MSC with small footprint area, high potential window, ultrahigh areal energy density, and long-term cycling stability is fabricated with shapeable materials and photolithographic technologies, which are compatible with modern microelectronic fabrication procedures widely used in industry. Benefiting from the novel architecture, the 3D asymmetric MSC displays an ultrahigh areal capacitance of 88.6 mF cm−2 and areal energy density of 28.69 mW h cm−2, superior to most reported interdigitated MSCs. Furthermore, the 3D tubular MSCs demonstrate remarkable cycling stability and the capacitance retention is up to 91.8% over 12 000 cycles. It is believed that the efficient fabrication methodology can be used to construct various integratable microscale tubular energy storage devices with small footprint area and high performance for miniaturized electronics.
  • Item
    Single Molecule Magnetism with Strong Magnetic Anisotropy and Enhanced Dy∙∙∙Dy Coupling in Three Isomers of Dy-Oxide Clusterfullerene Dy2O@C82
    (Chichester : John Wiley and Sons Ltd, 2019) Yang, W.; Velkos, G.; Liu, F.; Sudarkova, S.M.; Wang, Y.; Zhuang, J.; Zhang, H.; Li, X.; Zhang, X.; Büchner, B.; Avdoshenko, S.M.; Popov, A.A.; Chen, N.
    A new class of single-molecule magnets (SMMs) based on Dy-oxide clusterfullerenes is synthesized. Three isomers of Dy2O@C82 with Cs(6), C3v(8), and C2v(9) cage symmetries are characterized by single-crystal X-ray diffraction, which shows that the endohedral Dy−(µ2-O)−Dy cluster has bent shape with very short Dy−O bonds. Dy2O@C82 isomers show SMM behavior with broad magnetic hysteresis, but the temperature and magnetization relaxation depend strongly on the fullerene cage. The short Dy−O distances and the large negative charge of the oxide ion in Dy2O@C82 result in the very strong magnetic anisotropy of Dy ions. Their magnetic moments are aligned along the Dy−O bonds and are antiferromagnetically (AFM) coupled. At low temperatures, relaxation of magnetization in Dy2O@C82 proceeds via the ferromagnetically (FM)-coupled excited state, giving Arrhenius behavior with the effective barriers equal to the AFM-FM energy difference. The AFM-FM energy differences of 5.4–12.9 cm−1 in Dy2O@C82 are considerably larger than in SMMs with {Dy2O2} bridges, and the Dy∙∙∙Dy exchange coupling in Dy2O@C82 is the strongest among all dinuclear Dy SMMs with diamagnetic bridges. Dy-oxide clusterfullerenes provide a playground for the further tuning of molecular magnetism via variation of the size and shape of the fullerene cage.
  • Item
    Optimal principal component analysis of stem xeds spectrum images
    (Heidelberg : Springer Verlag, 2019) Potapov, P.; Lubk, A.
    STEM XEDS spectrum images can be drastically denoised by application of the principal component analysis (PCA). This paper looks inside the PCA workflow step by step on an example of a complex semiconductor structure consisting of a number of different phases. Typical problems distorting the principal components decomposition are highlighted and solutions for the successful PCA are described. Particular attention is paid to the optimal truncation of principal components in the course of reconstructing denoised data. A novel accurate and robust method, which overperforms the existing truncation methods is suggested for the first time and described in details.
  • Item
    Symmetry‐Induced Selective Excitation of Topological States in Su–Schrieffer–Heeger Waveguide Arrays
    (Weinheim : Wiley-VCH, 2023) Tang, Min; Wang, Jiawei; Valligatla, Sreeramulu; Saggau, Christian N.; Dong, Haiyun; Saei Ghareh Naz, Ehsan; Klembt, Sebastian; Lee, Ching Hua; Thomale, Ronny; van den Brink, Jeroen; Fulga, Ion Cosma; Schmidt, Oliver G.; Ma, Libo
    The investigation of topological state transition in carefully designed photonic lattices is of high interest for fundamental research, as well as for applied studies such as manipulating light flow in on-chip photonic systems. Herein, the topological phase transition between symmetric topological zero modes (TZM) and antisymmetric TZMs in Su–Schrieffer–Heeger mirror symmetric waveguides is reported. The transition of TZMs is realized by adjusting the coupling ratio between neighboring waveguide pairs, which is enabled by selective modulation of the refractive index in the waveguide gaps. Bidirectional topological transitions between symmetric and antisymmetric TZMs can be achieved with proposed switching strategy. Selective excitation of topological edge mode is demonstrated owing to the symmetry characteristics of the TZMs. The flexible manipulation of topological states is promising for on-chip light flow control and may spark further investigations on symmetric/antisymmetric TZM transitions in other photonic topological frameworks.
  • Item
    Rare-earth-free MnAl-C-Ni permanent magnets produced by extrusion of powder milled from bulk
    (Amsterdam : Elsevier, 2020) Feng, Le; Freudenberger, Jens; Mix, Torsten; Nielsch, Kornelius; Woodcock, Thomas George
    Rare-earth-free MnAl-C-Ni permanent magnets have been produced for the first time by extruding powders milled from bulk. The resulting materials, fabricated using different conditions, contained a large volume fraction (> 0.92) of the desired τ-phase. In terms of the maximum energy product, the best performance obtained for a whole, transverse section of the extruded material was (BH)max = 46 kJm−3, and was (BH)max = 49 kJm−3 for a sample taken from near the edge of this section. Analysis showed that this material was comparable to the long-established benchmark, comprising MnAl-C-based magnets extruded in industry from bulk or from gas-atomised powder. Such materials are no longer available. The microstructure of the materials produced here consisted of fine, recrystallised grains, which exhibited an <001> fibre texture with intermediate texture quality and of larger, non-recrystallised regions, which contained hierarchical twinning and a high density of defects. The volume fraction and size of the non-recrystallised regions was greatly reduced by decreasing the size of the initial powder particles. This led to a large increase in the squareness factor of the demagnetisation curve and consequently to the high (BH)max values observed.
  • Item
    Electrically-Pumped Wavelength-Tunable GaAs Quantum Dots Interfaced with Rubidium Atoms
    (Washington, DC : ACS, 2017) Huang, Huiying; Trotta, Rinaldo; Huo, Yongheng; Lettner, Thomas; Wildmann, Johannes S.; Martín-Sánchez, Javier; Huber, Daniel; Reindl, Marcus; Zhang, Jiaxiang; Zallo, Eugenio; Schmidt, Oliver G.; Rastelli, Armando
    We demonstrate the first wavelength-tunable electrically pumped source of nonclassical light that can emit photons with wavelength in resonance with the D2 transitions of 87Rb atoms. The device is fabricated by integrating a novel GaAs single-quantum-dot light-emitting diode (LED) onto a piezoelectric actuator. By feeding the emitted photons into a 75 mm long cell containing warm 87Rb vapor, we observe slow-light with a temporal delay of up to 3.4 ns. In view of the possibility of using 87Rb atomic vapors as quantum memories, this work makes an important step toward the realization of hybrid-quantum systems for future quantum networks.
  • Item
    Ultrahigh Power Factor in Thermoelectric System Nb0.95M0.05FeSb (M = Hf, Zr, and Ti)
    (Chichester : John Wiley and Sons Ltd, 2018) Ren, W.; Zhu, H.; Zhu, Q.; Saparamadu, U.; He, R.; Liu, Z.; Mao, J.; Wang, C.; Nielsch, K.; Wang, Z.; Ren, Z.
    Conversion efficiency and output power are crucial parameters for thermoelectric power generation that highly rely on figure of merit ZT and power factor (PF), respectively. Therefore, the synergistic optimization of electrical and thermal properties is imperative instead of optimizing just ZT by thermal conductivity reduction or just PF by electron transport enhancement. Here, it is demonstrated that Nb0.95Hf0.05FeSb has not only ultrahigh PF over ≈100 µW cm−1 K−2 at room temperature but also the highest ZT in a material system Nb0.95M0.05FeSb (M = Hf, Zr, Ti). It is found that Hf dopant is capable to simultaneously supply carriers for mobility optimization and introduce atomic disorder for reducing lattice thermal conductivity. As a result, Nb0.95Hf0.05FeSb distinguishes itself from other outstanding NbFeSb-based materials in both the PF and ZT. Additionally, a large output power density of ≈21.6 W cm−2 is achieved based on a single-leg device under a temperature difference of ≈560 K, showing the realistic prospect of the ultrahigh PF for power generation.
  • Item
    Charge‐Compensated N‐Doped π ‐Conjugated Polymers: Toward both Thermodynamic Stability of N‐Doped States in Water and High Electron Conductivity
    (Weinheim : Wiley-VCH, 2022) Borrmann, Fabian; Tsuda, Takuya; Guskova, Olga; Kiriy, Nataliya; Hoffmann, Cedric; Neusser, David; Ludwigs, Sabine; Lappan, Uwe; Simon, Frank; Geisler, Martin; Debnath, Bipasha; Krupskaya, Yulia; Al‐Hussein, Mahmoud; Kiriy, Anton
    The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective “in-water” applications is developed. A combined experimental–theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10−2 S cm−1 under ambient conditions and 10−1 S cm−1 in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced “collapse” of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.