Search Results

Now showing 1 - 5 of 5
  • Item
    Analysis of electronic properties frommagnetotransport measurements on Ba(Fe1-xNix)2As2 thin films
    (Basel : MDPI AG, 2020) Shipulin, I.; Richter, S.; Thomas, A.A.; Nielsch, K.; Hühne, R.; Martovitsky, V.
    We performed a detailed structural, magnetotransport, and superconducting analysis of thin epitaxial Ba(Fe1-xNix)2As2 films with Ni doping of x = 0.05 and 0.08, as prepared by pulsed laser deposition. X-ray diffraction studies demonstrate the high crystalline perfection of the films, which have a similar quality to single crystals. Furthermore, magnetotransport measurements of the films were performed in magnetic fields up to 9 T. The results we used to estimate the density of electronic states at the Fermi level, the coefficient of electronic heat capacity, and other electronic parameters for this compound, in their dependence on the dopant concentration within the framework of the Ginzburg-Landau-Abrikosov-Gorkov theory. The comparison of the determined parameters with measurement data on comparable Ba(Fe1-xNix)2As2 single crystals shows good agreement, which confirms the high quality of the obtained films.
  • Item
    Extremely large magnetoresistance from electron-hole compensation in the nodal-loop semimetal ZrP2
    (Woodbury, NY : Inst., 2021) Bannies, J.; Razzoli, E.; Michiardi, M.; Kung, H.-H.; Elfimov, I.S.; Yao, M.; Fedorov, A.; Fink, J.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; Damascelli, A.; Felser, C.
    Several early transition metal dipnictides (TMDPs) have been found to host topological semimetal states and exhibit large magnetoresistance (MR). In this paper, we use angle-resolved photoemission spectroscopy (ARPES) and magnetotransport to study the electronic properties of a TMDP ZrP2. We find that ZrP2 exhibits an extremely large and unsaturated MR of up to 40 000% at 2 K, which originates from an almost perfect electron-hole (e-h) compensation. Our band structure calculations further show that ZrP2 hosts a topological nodal loop in proximity to the Fermi level. Based on the ARPES measurements, we confirm the results of our calculations and determine the surface band structure. This paper establishes ZrP2 as a platform to investigate near-perfect e-h compensation and its interplay with topological band structures.
  • Item
    Influence of chemical interactions on the electronic properties of BiOI/organic semiconductor heterojunctions for application in solution-processed electronics
    (London [u.a.] : RSC, 2023) Lapalikar, Vaidehi; Dacha, Preetam; Hambsch, Mike; Hofstetter, Yvonne J.; Vaynzof, Yana; Mannsfeld, Stefan C. B.; Ruck, Michael
    Bismuth oxide iodide (BiOI) has been viewed as a suitable environmentally-friendly alternative to lead-halide perovskites for low-cost (opto-)electronic applications such as photodetectors, phototransistors and sensors. To enable its incorporation in these devices in a convenient, scalable, and economical way, BiOI thin films were investigated as part of heterojunctions with various p-type organic semiconductors (OSCs) and tested in a field-effect transistor (FET) configuration. The hybrid heterojunctions, which combine the respective functionalities of BiOI and the OSCs were processed from solution under ambient atmosphere. The characteristics of each of these hybrid systems were correlated with the physical and chemical properties of the respective materials using a concept based on heteropolar chemical interactions at the interface. Systems suitable for application in lateral transport devices were identified and it was demonstrated how materials in the hybrids interact to provide improved and synergistic properties. These indentified heterojunction FETs are a first instance of successful incorporation of solution-processed BiOI thin films in a three-terminal device. They show a significant threshold voltage shift and retained carrier mobility compared to pristine OSC devices and open up possibilities for future optoelectronic applications.
  • Item
    Towards deterministically controlled InGaAs/GaAs lateral quantum dot molecules
    (College Park, MD : Institute of Physics Publishing, 2008) Wang, L.; Rastelli, A.; Kiravittaya, S.; Atkinson, P.; Ding, F.; Bof Bufon, C.C.; Hermannstädter, C.; Witzany, M.; Beirne, G.J.; Michler, P.; Schmidt, O.G.
    We report on the fabrication, detailed characterization and modeling of lateral InGaAs quantum dot molecules (QDMs) embedded in a GaAs matrix and we discuss strategies to fully control their spatial configuration and electronic properties. The three-dimensional morphology of encapsulated QDMs was revealed by selective wet chemical etching of the GaAs top capping layer and subsequent imaging by atomic force microscopy (AFM). The AFM investigation showed that different overgrowth procedures have a profound consequence on the QDM height and shape. QDMs partially capped and annealed in situ for micro- photoluminescence spectroscopy consist of shallow but well-defined quantum dots (QDs) in contrast to misleading results usually provided by surface morphology measurements when they are buried by a thin GaAs layer. This uncapping approach is crucial for determining the QDM structural parameters, which are required for modeling the system. A single-band effective-mass approximation is employed to calculate the confined electron and heavy-hole energy levels, taking the geometry and structural information extracted from the uncapping experiments as inputs. The calculated transition energy of the single QDM shows good agreement with the experimentally observed values. By decreasing the edge-to-edge distance between the two QDs within a QDM, a splitting of the electron (hole) wavefunction into symmetric and antisymmetric states is observed, indicating the presence of lateral coupling. Site control of such lateral QDMs obtained by growth on a pre-patterned substrate, combined with a technology to fabricate gate structures at well-defined positions with respect to the QDMs, could lead to deterministically controlled devices based on QDMs. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Absorption and photoemission spectroscopy of rare-earth oxypnictides
    (Milton Park : Taylor & Francis, 2009) Kroll, T.; Roth, F.; Koitzsch, A.; Kraus, R.; Batchelor, D.R.; Werner, J.; Behr, G.; Büchner, B.; Knupfer, M.
    The electronic structure of various rare-earth oxypnictides has been investigated by performing Fe L2, 3 x-ray absorption spectroscopy, and Fe 2p and valence band x-ray photoemission spectroscopy. As representative samples the non-superconducting parent compounds LnFeAsO (Ln=La, Ce, Sm and Gd) have been chosen and measured at 25 and 300 K, i.e. below and above the structural and magnetic phase transition at ~150 K. We find no significant change of the electronic structure of the FeAs layers when switching between the different rare-earth ions or when varying the temperature below and above the transition temperatures. Using a simple two-configuration model, we find qualitative agreement with the Fe 2p3/2 core-level spectrum, which allows for a qualitative explanation of the experimental spectral shapes.