Search Results

Now showing 1 - 3 of 3
  • Item
    On the Impact of Strained PECVD Nitride Layers on Oxide Precipitate Nucleation in Silicon
    (Pennington, NJ : ECS, 2019) Kissinger, G.; Kot, D.; Costina, I.; Lisker, M.
    PECVD nitride layers with different layer stress ranging from about 315 MPa to −1735 MPa were deposited on silicon wafers with similar concentration of interstitial oxygen. After a thermal treatment consisting of nucleation at 650°C for 4 h or 8 h followed annealing 780°C 3 h + 1000°C 16 h in nitrogen, the profiles of the oxide precipitate density were investigated. The binding states of hydrogen in the layers was investigated by FTIR. There is a clear effect of the layer stress on oxide precipitate nucleation. The higher the compressive layer stress is the higher is a BMD peak below the front surface. If the nitride layer is removed after the nucleation anneal the BMD peak below the front surface becomes lower. It is possible to model the BMD peak below the surface by vacancy in-diffusion from the silicon/nitride interface. With increasing duration of the nucleation anneal the vacancy injection from the silicon/nitride interface decreases and with increasing compressive layer stress it increases. © The Author(s) 2019.
  • Item
    On the Impact of Strained PECVD Oxide Layers on Oxide Precipitation in Silicon
    (Pennington, NJ : ECS, 2019) Kissinger, G.; Kot, D.; Lisker, M.; Sattler, A.
    PECVD oxide layers with different layer stress ranging from about −305.2 MPa to 39.9 MPa were deposited on silicon wafers with similar concentration of interstitial oxygen. After a thermal treatment consisting of rapid thermal annealing (RTA) and furnace annealing 780°C 3 h + 1000°C 16 h in nitrogen the profiles of the oxide precipitate density were investigated. Supersaturations of self-interstitials as function of layer stress were determined by adjusting modelling results to measured depth profiles of bulk microdefects. The self-interstitial supersaturation generated by RTA at 1250°C and 1175°C at the silicon/oxide interface is increasing linearly with increasing layer stress. Values for self-interstitial supersaturation determined on deposited oxide layers after RTA at 1250°C and 1175°C are very similar to values published for RTO by Sudo et al. An RTA at 1175°C with a PECVD oxide on top of the wafer is a method to effectively suppress oxygen precipitation in silicon wafers. Nucleation anneals carried out at 650°C for 4 h and 8 h did not show any effect of PECVD oxide layers on oxide precipitate nucleation. © The Author(s) 2019.
  • Item
    Editors' Choice - Precipitation of Suboxides in Silicon, their Role in Gettering of Copper Impurities and Carrier Recombination
    (Pennington, NJ : ECS, 2020) Kissinger, G.; Kot, D.; Huber, A.; Kretschmer, R.; Müller, T.; Sattler, A.
    This paper describes a theoretical investigation of the phase composition of oxide precipitates and the corresponding emission of self-interstitials at the minimum of the free energy and their evolution with increasing number of oxygen atoms in the precipitates. The results can explain the compositional evolution of oxide precipitates and the role of self-interstitials therein. The formation of suboxides at the edges of SiO2 precipitates after reaching a critical size can explain several phenomena like gettering of Cu by segregation to the suboxide region and lifetime reduction by recombination of minority carriers in the suboxide. It provides an alternative explanation, based on minimized free energy, to the theory of strained and unstrained plates. A second emphasis was payed to the evolution of the morphology of oxide precipitates. Based on the comparison with results from scanning transmission electron microscopy the sequence of morphology evolution of oxide precipitates was deduced. It turned out that it is opposite to the sequence assumed until now. © 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.