Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Mechanoresponsive diselenide-crosslinked microgels with programmed ultrasound-triggered degradation and radical scavenging ability for protein protection

2022, Kharandiuk, Tetiana, Tan, Kok Hui, Xu, Wenjing, Weitenhagen, Fabian, Braun, Susanne, Göstl, Robert, Pich, Andrij

In the context of controlled delivery and release, proteins constitute a delicate class of cargo requiring advanced delivery platforms and protection. We here show that mechanoresponsive diselenide-crosslinked microgels undergo controlled ultrasound-triggered degradation in aqueous solution for the release of proteins. Simultaneously, the proteins are protected from chemical and conformational damage by the microgels, which disintegrate to water-soluble polymer chains upon sonication. The degradation process is controlled by the amount of diselenide crosslinks, the temperature, and the sonication amplitude. We demonstrate that the ultrasound-mediated cleavage of diselenide bonds in these microgels facilitates the release and activates latent functionality preventing the oxidation and denaturation of the encapsulated proteins (cytochrome C and myoglobin) opening new application possibilities in the targeted delivery of biomacromolecules.

Loading...
Thumbnail Image
Item

Comparison of Candida antarctica Lipase B Variants for Conversion of ε-Caprolactone in Aqueous Medium-Part 2

2018, Höck, Heidi, Engel, Stefan, Weingarten, Simone, Keul, Helmut, Schwaneberg, Ulrich, Möller, Martin, Bocola, Marco

Enzyme-catalyzed ring-opening polymerization of lactones is a method of increasing interest for the synthesis of polyesters. In the present work, we investigated which changes in the structure of Candida antarctica lipase B (CaLB) shift the catalytic equilibrium between esterification and hydrolysis towards polymerization. Therefore, we present two concepts: (i) removing the glycosylation of CaLB to increase the surface hydrophobicity; and (ii) introducing a hydrophobic lid adapted from Pseudomonas cepacia lipase (PsCL) to enhance the interaction of a growing polymer chain to the elongated lid helix. The deglycosylated CaLB (CaLB-degl) was successfully generated by site-saturation mutagenesis of asparagine 74. Furthermore, computational modeling showed that the introduction of a lid helix at position Ala148 was structurally feasible and the geometry of the active site remained intact. Via overlap extension PCR the lid was successfully inserted, and the variant was produced in large scale in Pichia pastoris with glycosylation (CaLB-lid) and without (CaLB-degl-lid). While the lid variants show a minor positive effect on the polymerization activity, CaLB-degl showed a clearly reduced hydrolytic and enhanced polymerization activity. Immobilization in a hydrophobic polyglycidol-based microgel intensified this effect such that a higher polymerization activity was achieved, compared to the “gold standard” Novozym® 435.

Loading...
Thumbnail Image
Item

Surface Functionalization by Stimuli-Sensitive Microgels for Effective Enzyme Uptake and Rational Design of Biosensor Setups

2018, Sigolaeva, Larisa V., Pergushov, Dmitry V., Oelmann, Marina, Schwarz, Simona, Brugnoni, Monia, Kurochkin, Ilya N., Plamper, Felix A., Fery, Andreas, Richtering, Walter

We highlight microgel/enzyme thin films that were deposited onto solid interfaces via two sequential steps, the adsorption of temperature- and pH-sensitive microgels, followed by their complexation with the enzyme choline oxidase, ChO. Two kinds of functional (ionic) microgels were compared in this work in regard to their adsorptive behavior and interaction with ChO, that is, poly(N-isopropylacrylamide-co-N-(3-aminopropyl)methacrylamide), P(NIPAM-co-APMA), bearing primary amino groups, and poly(N-isopropylacrylamide-co-N-[3-(dimethylamino) propyl]methacrylamide), P(NIPAM-co-DMAPMA), bearing tertiary amino groups. The stimuli-sensitive properties of the microgels in the solution were characterized by potentiometric titration, dynamic light scattering (DLS), and laser microelectrophoresis. The peculiarities of the adsorptive behavior of both the microgels and the specific character of their interaction with ChO were revealed by a combination of surface characterization techniques. The surface charge was characterized by electrokinetic analysis (EKA) for the initial graphite surface and the same one after the subsequent deposition of the microgels and the enzyme under different adsorption regimes. The masses of wet microgel and microgel/enzyme films were determined by quartz crystal microbalance with dissipation monitoring (QCM-D) upon the subsequent deposition of the components under the same adsorption conditions, on a surface of gold-coated quartz crystals. Finally, the enzymatic responses of the microgel/enzyme films deposited on graphite electrodes to choline were tested amperometrically. The presence of functional primary amino groups in the P(NIPAM-co-APMA) microgel enables a covalent enzyme-to-microgel coupling via glutar aldehyde cross-linking, thereby resulting in a considerable improvement of the biosensor operational stability.

Loading...
Thumbnail Image
Item

CaLB Catalyzed Conversion of ε-Caprolactone in Aqueous Medium. Part 1: Immobilization of CaLB to Microgels

2016, Engel, Stefan, Höck, Heidi, Bocola, Marco, Keul, Helmut, Schwaneberg, Ulrich, Möller, Martin

The enzymatic ring-opening polymerization of lactones is a method of increasing interest for the synthesis of biodegradable and biocompatible polymers. In the past it was shown that immobilization of Candida antarctica lipase B (CaLB) and the reaction medium play an important role in the polymerization ability especially of medium ring size lactones like ε-caprolactone (ε-CL). We investigated a route for the preparation of compartmentalized microgels based on poly(glycidol) in which CaLB was immobilized to increase its esterification ability. To find the ideal environment for CaLB, we investigated the acceptable water concentration and the accessibility for the monomer in model polymerizations in toluene and analyzed the obtained oligomers/polymers by NMR and SEC. We observed a sufficient accessibility for ε-CL to a toluene like hydrophobic phase imitating a hydrophobic microgel. Comparing free CaLB and Novozym® 435 we found that not the monomer concentration but rather the solubility of the enzyme, as well as the water concentration, strongly influences the equilibrium of esterification and hydrolysis. On the basis of these investigations, microgels of different polarity were prepared and successfully loaded with CaLB by physical entrapment. By comparison of immobilized and free CaLB, we demonstrated an effect of the hydrophobicity of the microenvironment of CaLB on its enzymatic activity.