Search Results

Now showing 1 - 3 of 3
  • Item
    The regional aerosol-climate model REMO-HAM
    (München : European Geopyhsical Union, 2012) Pietikäinen, J.-P.; O'Donnell, D.; Teichmann, C.; Karstens, U.; Pfeifer, S.; Kazil, J.; Podzun, R.; Fiedler, S.; Kokkola, H.; Birmili, W.; O'Dowd, C.; Baltensperger, U.; Weingartner, E.; Gehrig, R.; Spindler, G.; Kulmala, M.; Feichter, J.; Jacob, D.; Laaksonen, A.
    REMO-HAM is a new regional aerosol-climate model. It is based on the REMO regional climate model and includes most of the major aerosol processes. The structure for aerosol is similar to the global aerosol-climate model ECHAM5-HAM, for example the aerosol module HAM is coupled with a two-moment stratiform cloud scheme. On the other hand, REMO-HAM does not include an online coupled aerosol-radiation nor a secondary organic aerosol module. In this work, we evaluate the model and compare the results against ECHAM5-HAM and measurements. Four different measurement sites were chosen for the comparison of total number concentrations, size distributions and gas phase sulfur dioxide concentrations: Hyytiälä in Finland, Melpitz in Germany, Mace Head in Ireland and Jungfraujoch in Switzerland. REMO-HAM is run with two different resolutions: 50 × 50 km2 and 10 × 10 km2. Based on our simulations, REMO-HAM is in reasonable agreement with the measured values. The differences in the total number concentrations between REMO-HAM and ECHAM5-HAM can be mainly explained by the difference in the nucleation mode. Since we did not use activation nor kinetic nucleation for the boundary layer, the total number concentrations are somewhat underestimated. From the meteorological point of view, REMO-HAM represents the precipitation fields and 2 m temperature profile very well compared to measurement. Overall, we show that REMO-HAM is a functional aerosol-climate model, which will be used in further studies.
  • Item
    Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean
    (München : European Geopyhsical Union, 2016) Denjean, C.; Cassola, F.; Mazzino, A.; Triquet, S.; Chevaillier, S.; Grand, N.; Bourrianne, T.; Momboisse, G.; Sellegri, K.; Schwarzenbock, A.; Freney, E.; Mallet, M.; Formenti, P.
    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of transport (1–5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l.) than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling studies and satellite retrievals over the Mediterranean. Measurements also showed that the coarse mode of mineral dust was conserved even after 5 days of transport in the Mediterranean, which contrasts with the gravitational depletion of large particles observed during the transport of dust plumes over the Atlantic. Simulations with the WRF mesoscale meteorological model highlighted a strong vertical turbulence within the dust layers that could prevent deposition of large particles during their atmospheric transport. This has important implications for the dust radiative effects due to surface dimming, atmospheric heating and cloud formation. The results presented here add to the observational data set necessary for evaluating the role of mineral dust on the regional climate and rainfall patterns in the western Mediterranean basin and understanding their atmospheric transport at global scale.
  • Item
    Multivariate non-parametric Euclidean distance model for hourly disaggregation of daily climate data
    (Wien [u.a.] : Springer, 2021) Görner, Christina; Franke, Johannes; Kronenberg, Rico; Hellmuth, Olaf; Bernhofer, Christian
    The algorithm for and results of a newly developed multivariate non-parametric model, the Euclidean distance model (EDM), for the hourly disaggregation of daily climate data are presented here. The EDM is a resampling method based on the assumption that the day to be disaggregated has already occurred once in the past. The Euclidean distance (ED) serves as a measure of similarity to select the most similar day from historical records. EDM is designed to disaggregate daily means/sums of several climate elements at once, here temperature (T), precipitation (P), sunshine duration (SD), relative humidity (rH), and wind speed (WS), while conserving physical consistency over all disaggregated elements. Since weather conditions and hence the diurnal cycles of climate elements depend on the weather pattern, a selection approach including objective weather patterns (OWP) was developed. The OWP serve as an additional criterion to filter the most similar day. For a case study, EDM was applied to the daily climate data of the stations Dresden and Fichtelberg (Saxony, Germany). The EDM results agree well with the observed data, maintaining their statistics. Hourly results fit better for climate elements with homogenous diurnal cycles, e.g., T with very high correlations of up to 0.99. In contrast, the hourly results of the SD and the WS provide correlations up to 0.79. EDM tends to overestimate heavy precipitation rates, e.g., by up to 15% for Dresden and 26% for Fichtelberg, potentially due to, e.g., the smaller data pool for such events, and the equal-weighted impact of P in the ED calculation. The OWPs lead to somewhat improved results for all climate elements in terms of similar climate conditions of the basic stations. Finally, the performance of EDM is compared with the disaggregation tool MELODIST (Förster et al. 2015). Both tools deliver comparable and well corresponding results. All analyses of the generated hourly data show that EDM is a very robust and flexible model that can be applied to any climate station. Since EDM can disaggregate daily data of climate projections, future research should address whether the model is capable to respect and (re)produce future climate trends. Further, possible improvements by including the flow direction and future OWPs should be investigated, also with regard to reduce the overestimation of heavy rainfall rates.