Search Results

Now showing 1 - 10 of 104
  • Item
    Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate
    (Fort Collins, Colo. : [Verlag nicht ermittelbar], 2018) Collalti, Alessio; Trotta, Carlo; Keenan, Trevor F.; Ibrom, Andreas; Bond‐Lamberty, Ben; Grote, Ruediger; Vicca, Sara; Reyer, Christopher P. O.; Migliavacca, Mirco; Veroustraete, Frank; Anav, Alessandro; Campioli, Matteo; Scoccimarro, Enrico; Šigut, Ladislav; Grieco, Elisa; Cescatti, Alessandro; Matteucci, Giorgio
    Forest carbon use efficiency (CUE, the ratio of net to gross primary productivity) represents the fraction of photosynthesis that is not used for plant respiration. Although important, it is often neglected in climate change impact analyses. Here we assess the potential impact of thinning on projected carbon cycle dynamics and implications for forest CUE and its components (i.e., gross and net primary productivity and plant respiration), as well as on forest biomass production. Using a detailed process-based forest ecosystem model forced by climate outputs of five Earth System Models under four representative climate scenarios, we investigate the sensitivity of the projected future changes in the autotrophic carbon budget of three representative European forests. We focus on changes in CUE and carbon stocks as a result of warming, rising atmospheric CO2 concentration, and forest thinning. Results show that autotrophic carbon sequestration decreases with forest development, and the decrease is faster with warming and in unthinned forests. This suggests that the combined impacts of climate change and changing CO2 concentrations lead the forests to grow faster, mature earlier, and also die younger. In addition, we show that under future climate conditions, forest thinning could mitigate the decrease in CUE, increase carbon allocation into more recalcitrant woody pools, and reduce physiological-climate-induced mortality risks. Altogether, our results show that thinning can improve the efficacy of forest-based mitigation strategies and should be carefully considered within a portfolio of mitigation options.
  • Item
    Climate-driven interannual variability of water scarcity in food production potential: A global analysis
    (Göttingen : Copernicus GmbH, 2014) Kummu, M.; Gerten, D.; Heinke, J.; Konzmann, M.; Varis, O.
    Interannual climatic and hydrologic variability has been substantial during the past decades in many regions. While climate variability and its impacts on precipitation and soil moisture have been studied intensively, less is known on subsequent implications for global food production. In this paper we quantify effects of hydroclimatic variability on global "green" and "blue" water availability and demand in global agriculture, and thus complement former studies that have focused merely on long-term averages. Moreover, we assess some options to overcome chronic or sporadic water scarcity. The analysis is based on historical climate forcing data sets over the period 1977-2006, while demography, diet composition and land use are fixed to reference conditions (year 2000). In doing so, we isolate the effect of interannual hydroclimatic variability from other factors that drive food production. We analyse the potential of food production units (FPUs) to produce a reference diet for their inhabitants (3000 kcal cap-1 day -1, with 80% vegetal food and 20% animal products). We applied the LPJmL vegetation and hydrology model to calculate the variation in green-blue water availability and the water requirements to produce that very diet. An FPU was considered water scarce if its water availability was not sufficient to produce the diet (i.e. assuming food self-sufficiency to estimate dependency on trade from elsewhere). We found that 24% of the world's population lives in chronically water-scarce FPUs (i.e. water is scarce every year), while an additional 19% live under occasional water scarcity (water is scarce in some years). Among these 2.6 billion people altogether, 55% would have to rely on international trade to reach the reference diet, while for 24% domestic trade would be enough. For the remaining 21% of the population exposed to some degree of water scarcity, local food storage and/or intermittent trade would be enough to secure the reference diet over the occasional dry years.
  • Item
    Changes of temperature-related agroclimatic indices in Poland
    (Heidelberg : Springer Verlag, 2016) Graczyk, D.; Kundzewicz, Z.W.
  • Item
    Climate change and its effect on agriculture, water resources and human health sectors in Poland
    (Göttingen : Copernicus GmbH, 2010) Szwed, M.; Karg, G.; Pińskwar, I.; Radziejewski, M.; Graczyk, D.; Kȩdziora, A.; Kundzewicz, Z.W.
    Multi-model ensemble climate projections in the ENSEMBLES Project of the EU allowed the authors to quantify selected extreme-weather indices for Poland, of importance to climate impacts on systems and sectors. Among indices were: number of days in a year with high value of the heat index; with high maximum and minimum temperatures; length of vegetation period; and number of consecutive dry days. Agricultural, hydrological, and human health indices were applied to evaluate the changing risk of weather extremes in Poland in three sectors. To achieve this, model-based simulations were compared for two time horizons, a century apart, i.e., 1961-1990 and 2061-2090. Climate changes, and in particular increases in temperature and changes in rainfall, have strong impacts on agriculture via weather extremes-droughts and heat waves. The crop yield depends particularly on water availability in the plant development phase. To estimate the changes in present and future yield of two crops important for Polish agriculture i.e., potatoes and wheat, some simple empirical models were used. For these crops, decrease of yield is projected for most of the country, with national means of yield change being:-2.175 t/ha for potatoes and-0.539 t/ha for wheat. Already now, in most of Poland, evapotranspiration exceeds precipitation during summer, hence the water storage (in surface water bodies, soil and ground) decreases. Summer precipitation deficit is projected to increase considerably in the future. The additional water supplies (above precipitation) needed to use the agro-potential of the environment would increase by half. Analysis of water balance components (now and in the projected future) can corroborate such conclusions. As regards climate and health, a composite index, proposed in this paper, is a product of the number of senior discomfort days and the number of seniors (aged 65+). The value of this index is projected to increase over 8-fold during 100 years. This is an effect of both increase in the number of seniors (over twofold) and the number of senior-discomfort days (nearly fourfold).
  • Item
    Climate-driven or human-induced: Indicating severe water scarcity in the Moulouya river basin (Morocco)
    (Basel : MDPI AG, 2012) Tekken, V.; Kropp, J.P.
    Many agriculture-based economies are increasingly under stress from climate change and socio-economic pressures. The excessive exploitation of natural resources still represents the standard procedure to achieve socio-economic development. In the area of the Moulouya river basin, Morocco, natural water availability represents a key resource for all economic activities. Agriculture represents the most important sector, and frequently occurring water deficits are aggravated by climate change. On the basis of historical trends taken from CRU TS 2.1, this paper analyses the impact of climate change on the per capita water availability under inclusion of population trends. The Climatic Water Balance (CWB) shows a significant decrease for the winter period, causing adverse effects for the main agricultural season. Further, moisture losses due to increasing evapotranspiration rates indicate problems for the annual water budget and groundwater recharge. The per capita blue water availability falls below a minimum threshold of 500 m3 per year, denoting a high regional vulnerability to increasing water scarcity assuming a no-response scenario. Regional development focusing on the water-intense sectors of agriculture and tourism appears to be at risk. Institutional capacities and policies need to address the problem, and the prompt implementation of innovative water production and efficiency measures is recommended.
  • Item
    Climate change impacts on hydrology and water resources
    (Stuttgart : Gebrueder Borntraeger Verlagsbuchhandlung, 2015) Hattermann, F.F.; Huang, S.; Koch, H.
  • Item
    Model-based reconstruction and projections of soil moisture anomalies and crop losses in Poland
    (Wien [u.a.] : Springer, 2020) Piniewski, Mikołaj; Marcinkowski, Paweł; O’Keeffe, Joanna; Szcześniak, Mateusz; Nieróbca, Anna; Kozyra, Jerzy; Kundzewicz, Zbigniew W.; Okruszko, Tomasz
    Evidence shows that soil moisture (SM) anomalies (deficits or excesses) are the key factor affecting crop yield in rain-fed agriculture. Over last decades, Poland has faced several major droughts and at least one major soil moisture excess event leading to severe crop losses. This study aims to simulate the multi-annual variability of SM anomalies in Poland, using a process-based SWAT model and to assess the effect of climate change on future extreme SM conditions, potentially affecting crop yields in Poland. A crop-specific indicator based on simulated daily soil moisture content for the critical development stages of investigated crops (winter cereals, spring cereals, potato and maize) was designed, evaluated for past conditions against empirical crop-weather indices (CWIs), and applied for studying future climate conditions. The study used an ensemble of nine bias-corrected EURO-CORDEX projections for two future horizons: 2021–2050 and 2071–2100 under two Representative Concentration Pathways: RCP4.5 and 8.5. Historical simulation results showed that SWAT was capable of capturing major SM deficit and excess episodes for different crops in Poland. For spring cereals, potato and maize, despite a large model spread, projections generally showed increase of severity of soil moisture deficits, as well as of total area affected by them. Ensemble median fraction of land with extreme soil moisture deficits, occupied by each of these crops, is projected to at least double in size. The signals of change in soil moisture excesses for potato and maize were more dependent on selection of RCP and future horizon. © 2020, The Author(s).
  • Item
    Interglacials of the last 800,000 years
    (Hoboken, NJ : Blackwell Publishing Ltd, 2016) Berger, B.; Crucifix, M.; Hodell, D.A.; Mangili, C.; McManus, J.F.; Otto-Bliesner, B.; Pol, K.; Raynaud, D.; Skinner, L.C.; Tzedakis, P.C.; Wolff, E.W.; Yin, Q.Z.; Abe-Ouchi, A.; Barbante, C.; Brovkin, V.; Cacho, I.; Capron, E.; Ferretti, P.; Ganopolski, A.; Grimalt, J.O.; Hönisch, B.; Kawamura, K.A.; Landais, A.; Margari, V.; Martrat, B.; Masson-Delmotte, V.; Mokeddem, Z.; Parrenin, F.; Prokopenko, A.A.; Rashid, H.; Schulz, M.; Vazquez Riveiros, N.
  • Item
    Management scenarios of the Grand Ethiopian Renaissance Dam and their impacts under recent and future climates
    (Basel : MDPI, 2017) Liersch, Stefan; Koch, Hagen; Hattermann, Fred Fokko
    Close to the border with Sudan, Ethiopia is currently building the largest hydroelectric power plant in Africa with a storage volume corresponding to approximately 1.5 years of the mean discharges of the Blue Nile. This endeavor is controversially debated in the public and the scientific literature. Contributing to this discussion, by shading some light on climate change issues, an eco-hydrological model, equipped with a reservoir module, was applied to investigate downstream hydrological impacts during filling and regular operation, the latter considering climate change projected by an ensemble of 10 global and regional climate models. Our results show that at the earliest after 20 months, the dam could produce hydroelectric power. Full supply level may be reached after four years or not at all, depending on filling policies and assumptions of seepage rates. Under recent hydro-climatic conditions, the dam may produce 13 TWh −a , which is below the envisaged target of 15.7 TWh −a . The ensemble mean suggests slightly increasing hydropower production in the future. Almost independently of the operation rules, the highly variable discharge regime will be significantly altered to a regime with almost equal flows each month. Achieving a win-win situation for all riparian countries requires a high level of cooperation in managing the Eastern Nile water resources.
  • Item
    Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: A multi-model analysis with a new set of land-cover change scenarios
    (Göttingen : Copernicus GmbH, 2017) Guimberteau, M.; Ciais, P.; Pablo, Boisier, J.; Paula Dutra Aguiar, A.; Biemans, H.; De Deurwaerder, H.; Galbraith, D.; Kruijt, B.; Langerwisch, F.; Poveda, G.; Rammig, A.; Andres Rodriguez, D.; Tejada, G.; Thonicke, K.; Von, Randow, C.; Randow, R.; Zhang, K.; Verbeeck, H.
    Deforestation in Amazon is expected to decrease evapotranspiration (ET) and to increase soil moisture and river discharge under prevailing energy-limited conditions. The magnitude and sign of the response of ET to deforestation depend both on the magnitude and regional patterns of land-cover change (LCC), as well as on climate change and CO2 levels. On the one hand, elevated CO2 decreases leaf-scale transpiration, but this effect could be offset by increased foliar area density. Using three regional LCC scenarios specifically established for the Brazilian and Bolivian Amazon, we investigate the impacts of climate change and deforestation on the surface hydrology of the Amazon Basin for this century, taking 2009 as a reference. For each LCC scenario, three land surface models (LSMs), LPJmL-DGVM, INLAND-DGVM and ORCHIDEE, are forced by bias-corrected climate simulated by three general circulation models (GCMs) of the IPCC 4th Assessment Report (AR4). On average, over the Amazon Basin with no deforestation, the GCM results indicate a temperature increase of 3.3ĝ€°C by 2100 which drives up the evaporative demand, whereby precipitation increases by 8.5 %, with a large uncertainty across GCMs. In the case of no deforestation, we found that ET and runoff increase by 5.0 and 14ĝ€%, respectively. However, in south-east Amazonia, precipitation decreases by 10ĝ€% at the end of the dry season and the three LSMs produce a 6ĝ€% decrease of ET, which is less than precipitation, so that runoff decreases by 22 %. For instance, the minimum river discharge of the Rio Tapajós is reduced by 31ĝ€% in 2100. To study the additional effect of deforestation, we prescribed to the LSMs three contrasted LCC scenarios, with a forest decline going from 7 to 34ĝ€% over this century. All three scenarios partly offset the climate-induced increase of ET, and runoff increases over the entire Amazon. In the south-east, however, deforestation amplifies the decrease of ET at the end of dry season, leading to a large increase of runoff (up to +27ĝ€% in the extreme deforestation case), offsetting the negative effect of climate change, thus balancing the decrease of low flows in the Rio Tapajós. These projections are associated with large uncertainties, which we attribute separately to the differences in LSMs, GCMs and to the uncertain range of deforestation. At the subcatchment scale, the uncertainty range on ET changes is shown to first depend on GCMs, while the uncertainty of runoff projections is predominantly induced by LSM structural differences. By contrast, we found that the uncertainty in both ET and runoff changes attributable to uncertain future deforestation is low.