Search Results

Now showing 1 - 10 of 11
  • Item
    Bioenergy for climate change mitigation: Scale and sustainability
    (Oxford : Wiley-Blackwell, 2021) Calvin, Katherine; Cowie, Annette; Berndes, Göran; Arneth, Almut; Cherubini, Francesco; Portugal‐Pereira, Joana; Grassi, Giacomo; House, Jo; Johnson, Francis X.; Popp, Alexander; Rounsevell, Mark; Slade, Raphael; Smith, Pete
    Many global climate change mitigation pathways presented in IPCC assessment reports rely heavily on the deployment of bioenergy, often used in conjunction with carbon capture and storage. We review the literature on bioenergy use for climate change mitigation, including studies that use top-down integrated assessment models or bottom-up modelling, and studies that do not rely on modelling. We summarize the state of knowledge concerning potential co-benefits and adverse side effects of bioenergy systems and discuss limitations of modelling studies used to analyse consequences of bioenergy expansion. The implications of bioenergy supply on mitigation and other sustainability criteria are context dependent and influenced by feedstock, management regime, climatic region, scale of deployment and how bioenergy alters energy systems and land use. Depending on previous land use, widespread deployment of monoculture plantations may contribute to mitigation but can cause negative impacts across a range of other sustainability criteria. Strategic integration of new biomass supply systems into existing agriculture and forest landscapes may result in less mitigation but can contribute positively to other sustainability objectives. There is considerable variation in evaluations of how sustainability challenges evolve as the scale of bioenergy deployment increases, due to limitations of existing models, and uncertainty over the future context with respect to the many variables that influence alternative uses of biomass and land. Integrative policies, coordinated institutions and improved governance mechanisms to enhance co-benefits and minimize adverse side effects can reduce the risks of large-scale deployment of bioenergy. Further, conservation and efficiency measures for energy, land and biomass can support greater flexibility in achieving climate change mitigation and adaptation.
  • Item
    Biomass production in plantations: Land constraints increase dependency on irrigation water
    (Oxford : Wiley-Blackwell, 2018) Jans, Yvonne; Berndes, Göran; Heinke, Jens; Lucht, Wolfgang; Gerten, Dieter
    Integrated assessment model scenarios project rising deployment of biomass-using energy systems in climate change mitigation scenarios. But there is concern that bioenergy deployment will increase competition for land and water resources and obstruct objectives such as nature protection, the preservation of carbon-rich ecosystems, and food security. To study the relative importance of water and land availability as biophysical constraints to bioenergy deployment at a global scale, we use a process-detailed, spatially explicit biosphere model to simulate rain-fed and irrigated biomass plantation supply along with the corresponding water consumption for different scenarios concerning availability of land and water resources. We find that global plantation supplies are mainly limited by land availability and only secondarily by freshwater availability. As a theoretical upper limit, if all suitable lands on Earth, besides land currently used in agriculture, were available for bioenergy plantations (“Food first” scenario), total plantation supply would be in the range 2,010–2,300 EJ/year depending on water availability and use. Excluding all currently protected areas reduces the supply by 60%. Excluding also areas where conversion to biomass plantations causes carbon emissions that might be considered unacceptably high will reduce the total plantation supply further. For example, excluding all areas where soil and vegetation carbon stocks exceed 150 tC/ha (“Carbon threshold savanna” scenario) reduces the supply to 170–290 EJ/year. With decreasing land availability, the amount of water available for irrigation becomes vitally important. In the least restrictive land availability scenario (“Food first”), up to 77% of global plantation biomass supply is obtained without additional irrigation. This share is reduced to 31% for the most restrictive “Carbon threshold savanna” scenario. The results highlight the critical—and geographically varying—importance of co-managing land and water resources if substantial contributions of bioenergy are to be reached in mitigation portfolios.
  • Item
    Antimicrobial effects of microwave-induced plasma torch (MiniMIP) treatment on Candida albicans biofilms
    (Oxford : Wiley-Blackwell, 2019) Handorf, Oliver; Schnabel, Uta; Bösel, André; Weihe, Thomas; Bekeschus, Sander; Graf, Alexander Christian; Riedel, Katharina; Ehlbeck, Jörg
    The susceptibility of Candida albicans biofilms to a non-thermal plasma treatment has been investigated in terms of growth, survival and cell viability by a series of in vitro experiments. For different time periods, the C. albicans strain SC5314 was treated with a microwave-induced plasma torch (MiniMIP). The MiniMIP treatment had a strong effect (reduction factor (RF) = 2.97 after 50 s treatment) at a distance of 3 cm between the nozzle and the superior regions of the biofilms. In addition, a viability reduction of 77% after a 20 s plasma treatment and a metabolism reduction of 90% after a 40 s plasma treatment time were observed for C. albicans. After such a treatment, the biofilms revealed an altered morphology of their cells by atomic force microscopy (AFM). Additionally, fluorescence microscopy and confocal laser scanning microscopy (CLSM) analyses of plasma-treated biofilms showed that an inactivation of cells mainly appeared on the bottom side of the biofilms. Thus, the plasma inactivation of the overgrown surface reveals a new possibility to combat biofilms. © 2019 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
  • Item
    Caspase-1 inflammasome activity in patients with Staphylococcus aureus bacteremia
    (Oxford : Wiley-Blackwell, 2019) Rasmussen, Gunlög; Idosa, Berhane Asfaw; Bäckman, Anders; Monecke, Stefan; Strålin, Kristoffer; Särndahl, Eva; Söderquist, Bo
    The inflammasome is a multiprotein complex that mediates caspase-1 activation with subsequent maturation of the proinflammatory cytokines IL-1ß and IL-18. The NLRP3 inflammasome is known to be activated by Staphylococcus aureus, one of the leading causes of bacteremia worldwide. Inflammasome activation and regulation in response to bacterial infection have been found to be of importance for a balanced host immune response. However, inflammasome signaling in vivo in humans initiated by S. aureus is currently sparsely studied. This study therefore aimed to investigate NLRP3 inflammasome activity in 20 patients with S. aureus bacteremia (SAB), by repeated measurement during the first week of bacteremia, compared with controls. Caspase-1 activity was measured in monocytes and neutrophils by flow cytometry detecting FLICA (fluorescent-labeled inhibitor of caspase-1), while IL-1ß and IL-18 was measured by Luminex and ELISA, respectively. As a measure of inflammasome priming, messenger RNA (mRNA) expression of NLRP3, CASP1 (procaspase-1), and IL1B (pro-IL-1ß) was analyzed by quantitative PCR. We found induced caspase-1 activity in innate immune cells with subsequent release of IL-18 in patients during the acute phase of bacteremia, indicating activation of the inflammasome. There was substantial interindividual variation in caspase-1 activity between patients with SAB. We also found an altered inflammasome priming with low mRNA levels of NLRP3 accompanied by elevated mRNA levels of IL1B. This increased knowledge of the individual host immune response in SAB could provide support in the effort to optimize management and treatment of each individual patient. © 2019 The Authors. Microbiology and Immunology published by The Societies and John Wiley & Sons Australia, Ltd
  • Item
    Pyrogenic carbon capture and storage
    (Oxford : Wiley-Blackwell, 2019) Schmidt, Hans-Peter; Anca-Couce, Andrés; Hagemann, Nikolas; Werner, Constanze; Gerten, Dieter; Lucht, Wolfgang; Kammann, Claudia
    The growth of biomass is considered the most efficient method currently available to extract carbon dioxide from the atmosphere. However, biomass carbon is easily degraded by microorganisms releasing it in the form of greenhouse gases back to the atmosphere. If biomass is pyrolyzed, the organic carbon is converted into solid (biochar), liquid (bio-oil), and gaseous (permanent pyrogas) carbonaceous products. During the last decade, biochar has been discussed as a promising option to improve soil fertility and sequester carbon, although the carbon efficiency of the thermal conversion of biomass into biochar is in the range of 30%–50% only. So far, the liquid and gaseous pyrolysis products were mainly considered for combustion, though they can equally be processed into recalcitrant forms suitable for carbon sequestration. In this review, we show that pyrolytic carbon capture and storage (PyCCS) can aspire for carbon sequestration efficiencies of >70%, which is shown to be an important threshold to allow PyCCS to become a relevant negative emission technology. Prolonged residence times of pyrogenic carbon can be generated (a) within the terrestrial biosphere including the agricultural use of biochar; (b) within advanced bio-based materials as long as they are not oxidized (biochar, bio-oil); and (c) within suitable geological deposits (bio-oil and CO 2 from permanent pyrogas oxidation). While pathway (c) would need major carbon taxes or similar governmental incentives to become a realistic option, pathways (a) and (b) create added economic value and could at least partly be implemented without other financial incentives. Pyrolysis technology is already well established, biochar sequestration and bio-oil sequestration in soils, respectively biomaterials, do not present ecological hazards, and global scale-up appears feasible within a time frame of 10–30 years. Thus, PyCCS could evolve into a decisive tool for global carbon governance, serving climate change mitigation and the sustainable development goals simultaneously. © 2018 John Wiley & Sons Ltd
  • Item
    Airborne bacterial emission fluxes from manure-fertilized agricultural soil
    (Oxford : Wiley-Blackwell, 2020) Thiel, Nadine; Münch, Steffen; Behrens, Wiebke; Junker, Vera; Faust, Matthias; Biniasch, Oliver; Kabelitz, Tina; Siller, Paul; Boedeker, Christian; Schumann, Peter; Roesler, Uwe; Amon, Thomas; Schepanski, Kerstin; Funk, Roger; Nübel, Ulrich
    This is the first study to quantify the dependence on wind velocity of airborne bacterial emission fluxes from soil. It demonstrates that manure bacteria get aerosolized from fertilized soil more easily than soil bacteria, and it applies bacterial genomic sequencing for the first time to trace environmental faecal contamination back to its source in the chicken barn. We report quantitative, airborne emission fluxes of bacteria during and following the fertilization of agricultural soil with manure from broiler chickens. During the fertilization process, the concentration of airborne bacteria culturable on blood agar medium increased more than 600 000-fold, and 1 m3 of air carried 2.9 × 105 viable enterococci, i.e. indicators of faecal contamination which had been undetectable in background air samples. Trajectory modelling suggested that atmospheric residence times and dispersion pathways were dependent on the time of day at which fertilization was performed. Measurements in a wind tunnel indicated that airborne bacterial emission fluxes from freshly fertilized soil under local climatic conditions on average were 100-fold higher than a previous estimate of average emissions from land. Faecal bacteria collected from soil and dust up to seven weeks after fertilization could be traced to their origins in the poultry barn by genomic sequencing. Comparative analyses of 16S rRNA gene sequences from manure, soil and dust showed that manure bacteria got aerosolized preferably, likely due to their attachment to low-density manure particles. Our data show that fertilization with manure may cause substantial increases of bacterial emissions from agricultural land. After mechanical incorporation of manure into soil, however, the associated risk of airborne infection is low.
  • Item
    Bioactive secondary metabolites with multiple activities from a fungal endophyte
    (Oxford : Wiley-Blackwell, 2016) Bogner, Catherine W.; Kamdem, Ramsay S.T.; Sichtermann, Gisela; Matthäus, Christian; Hölscher, Dirk; Popp, Jürgen; Proksch, Peter; Grundler, Florian M.W.; Schouten, Alexander
    In order to replace particularly biohazardous nematocides, there is a strong drive to finding natural product-based alternatives with the aim of containing nematode pests in agriculture. The metabolites produced by the fungal endophyte Fusarium oxysporum 162 when cultivated on rice media were isolated and their structures elucidated. Eleven compounds were obtained, of which six were isolated from a Fusarium spp. for the first time. The three most potent nematode-antagonistic compounds, 4-hydroxybenzoic acid, indole-3-acetic acid (IAA) and gibepyrone D had LC50 values of 104, 117 and 134 μg ml−1, respectively, after 72 h. IAA is a well-known phytohormone that plays a role in triggering plant resistance, thus suggesting a dual activity, either directly, by killing or compromising nematodes, or indirectly, by inducing defence mechanisms against pathogens (nematodes) in plants. Such compounds may serve as important leads in the development of novel, environmental friendly, nematocides.
  • Item
    Real-time monitoring of cell surface protein arrival with split luciferases
    (Oxford : Wiley-Blackwell, 2023) Fischer, Alexandra A. M.; Schatz, Larissa; Baaske, Julia; Römer, Winfried; Weber, Wilfried; Thuenauer, Roland
    Each cell in a multicellular organism permanently adjusts the concentration of its cell surface proteins. In particular, epithelial cells tightly control the number of carriers, transporters and cell adhesion proteins at their plasma membrane. However, sensitively measuring the cell surface concentration of a particular protein of interest in live cells and in real time represents a considerable challenge. Here, we introduce a novel approach based on split luciferases, which uses one luciferase fragment as a tag on the protein of interest and the second fragment as a supplement to the extracellular medium. Once the protein of interest arrives at the cell surface, the luciferase fragments complement and generate luminescence. We compared the performance of split Gaussia luciferase and split Nanoluciferase by using a system to synchronize biosynthetic trafficking with conditional aggregation domains. The best results were achieved with split Nanoluciferase, for which luminescence increased more than 6000-fold upon recombination. Furthermore, we showed that our approach can separately detect and quantify the arrival of membrane proteins at the apical and basolateral plasma membrane in single polarized epithelial cells by detecting the luminescence signals with a microscope, thus opening novel avenues for characterizing the variations in trafficking in individual epithelial cells.
  • Item
    Novel genetic modules encoding high-level antibiotic-free protein expression in probiotic lactobacilli
    (Oxford : Wiley-Blackwell, 2023) Dey, Sourik; Blanch‐Asensio, Marc; Balaji Kuttae, Sanjana; Sankaran, Shrikrishnan
    Lactobacilli are ubiquitous in nature, often beneficially associated with animals as commensals and probiotics, and are extensively used in food fermentation. Due to this close-knit association, there is considerable interest to engineer them for healthcare applications in both humans and animals, for which high-performance and versatile genetic parts are greatly desired. For the first time, we describe two genetic modules in Lactiplantibacillus plantarum that achieve high-level gene expression using plasmids that can be retained without antibiotics, bacteriocins or genomic manipulations. These include (i) a promoter, PtlpA, from a phylogenetically distant bacterium, Salmonella typhimurium, which drives up to 5-fold higher level of gene expression compared to previously reported promoters and (ii) multiple toxin-antitoxin systems as a self-contained and easy-to-implement plasmid retention strategy that facilitates the engineering of tuneable transient genetically modified organisms. These modules and the fundamental factors underlying their functionality that are described in this work will greatly contribute to expanding the genetic programmability of lactobacilli for healthcare applications.
  • Item
    Expanding the genetic programmability of Lactiplantibacillus plantarum
    (Oxford : Wiley-Blackwell, 2024) Blanch‐Asensio, Marc; Dey, Sourik; Tadimarri, Varun Sai; Sankaran, Shrikrishnan
    Lactobacilli are ubiquitous in nature and symbiotically provide health benefits for countless organisms including humans, animals and plants. They are vital for the fermented food industry and are being extensively explored for healthcare applications. For all these reasons, there is considerable interest in enhancing and controlling their capabilities through the engineering of genetic modules and circuits. One of the most robust and reliable microbial chassis for these synthetic biology applications is the widely used Lactiplantibacillus plantarum species. However, the genetic toolkit needed to advance its applicability remains poorly equipped. This mini-review highlights the genetic parts that have been discovered to achieve food-grade recombinant protein production and speculates on lessons learned from these studies for L. plantarum engineering. Furthermore, strategies to identify, create and optimize genetic parts for real-time regulation of gene expression and enhancement of biosafety are also suggested.