Search Results

Now showing 1 - 10 of 40
  • Item
    Time‐Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution
    (Weinheim : Wiley-VCH, 2022) Wang, Lei; Torkamanzadeh, Mohammad; Majed, Ahmad; Zhang, Yuan; Wang, Qingsong; Breitung, Ben; Feng, Guang; Naguib, Michael; Presser, Volker
    Electrochemical ion separation is a promising technology to recover valuable ionic species from water. Pseudocapacitive materials, especially 2D materials, are up-and-coming electrodes for electrochemical ion separation. For implementation, it is essential to understand the interplay of the intrinsic preference of a specific ion (by charge/size), kinetic ion preference (by mobility), and crystal structure changes. Ti3C2Tz MXene is chosen here to investigate its selective behavior toward alkali and alkaline earth cations. Utilizing an online inductively coupled plasma system, it is found that Ti3C2Tz shows a time-dependent selectivity feature. In the early stage of charging (up to about 50 min), K+ is preferred, while ultimately Ca2+ and Mg2+ uptake dominate; this unique phenomenon is related to dehydration energy barriers and the ion exchange effect between divalent and monovalent cations. Given the wide variety of MXenes, this work opens the door to a new avenue where selective ion-separation with MXene can be further engineered and optimized.
  • Item
    Mechanically Stable, Binder‐Free, and Free‐Standing Vanadium Trioxide/Carbon Hybrid Fiber Electrodes for Lithium‐Ion Batteries
    (Weinheim : Wiley-VCH, 2023) Bornamehr, Behnoosh; Gallei, Markus; Husmann, Samantha; Presser, Volker
    Binder is a crucial component in present-day battery electrodes but commonly contains fluorine and requires coating processing using organic (often toxic) solvents. Preparing binder-free electrodes is an attractive strategy to make battery electrode production and its end-of-use waste greener and safer. Herein, electrospinning is employed to prepare binder-free and self-standing electrodes. Such electrodes often suffer from low flexibility, and the correlation between performance and flexibility is usually overlooked. Processing parameters affect the mechanical properties of the electrodes, and for the first time it is reported that mechanical flexibility directly influences the electrochemical performance of the electrode. The importance is highlighted when processing parameters advantageous to powder materials, such as a higher heat treatment temperature, harm self-standing electrodes due to deterioration of fiber flexibility. Other strategies, such as conductive carbon addition, can be employed to improve the cell performance, but their effect on the mechanical properties of the electrodes must be considered. Rapid heat treatment achieves self-standing V2O3 with a capacity of 250 mAh g−1 at 250 mA g−1 and 390 mAh g−1 at 10 mA g−1
  • Item
    Reconstruction of Ultra-thin Alveolar-capillary Basement Membrane Mimics
    (Weinheim : Wiley-VCH, 2021) Jain, Puja; Nishiguchi, Akihiro; Linz, Georg; Wessling, Matthias; Ludwig, Andreas; Rossaint, Rolf; Möller, Martin; Singh, Smriti
    Alveolar-capillary basement membrane (BM) is ultra-thin (<2 µm) extracellular matrix that maintains integral epithelial-endothelial cell layers. In vitro reconstructions of alveolar-capillary barrier supported on synthetic scaffolds closely resembling the fibrous and ultra-thin natural BM are essential in mimicking the lung pathophysiology. Although BM topology and dimensions are well known to significantly influence cellular behavior, conventionally used BM mimics fail to recreate this natural niche. To overcome this, electrospun ultra-thin 2 µm poly(caprolactone) (PCL) nanofibrous mesh is used to establish an alveolar-capillary barrier model of lung endothelial/epithelial cells. Transepithelial electrical resistance (TEER) and permeability studies reveal integral tight junctions and improved mass transport through the highly porous PCL meshes compared to conventional dense membranes with etched pores. The chemotaxis of neutrophils is shown across the barrier in presence of inflammatory response that is naturally impeded in confined regions. Conventional requirement of 3 µm or larger pore size can lead to barrier disruption due to epithelial/endothelial cell invasion. Despite high porosity, the interconnected BM mimic prevents barrier disruption and allows neutrophil transmigration, thereby demonstrating the physiological relevance of the thin nanofibrous meshes. It is envisioned that these bipolar cultured barriers would contribute to an organ-level in vitro model for pathological disease, environmental pollutants, and nanotoxicology. © 2021 The Authors. Advanced Biology published by Wiley-VCH GmbH
  • Item
    Self-Adhesive Silicone Microstructures for the Treatment of Tympanic Membrane Perforations
    (Weinheim : Wiley-VCH, 2021) Lana, Gabriela Moreira; Sorg, Katharina; Wenzel, Gentiana Ioana; Hecker, Dietmar; Hensel, René; Schick, Bernhard; Kruttwig, Klaus; Arzt, Eduard
    Inspired by the gecko foot, polymeric microstructures have demonstrated reliable dry adhesion to both stiff objects and sensitive surfaces such as skin. Microstructured silicone patches are proposed, herein, for the treatment of tympanic membrane perforations with the aim of serving as an alternative for current surgical procedures that require anesthesia and ear canal packing. Sylgard 184 PDMS micropillars of 20 μm in diameter and 60 μm in length are topped by a Soft Skin Adhesive (SSA) MG7-1010 terminal layer, of about 25 μm thickness. The adhesion is evaluated by specially designed tack tests against explanted murine eardrums and, for comparison, against a rigid substrate. Functional effects are evaluated using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAE). The adhesion strength of the microstructure and unstructured controls to explanted murine tympanic membranes is comparable (typically 12 kPa), but the microstructured patches are easier to handle by the surgeon. For the first time, partial recovery of hearing performance is measured immediately after patch application. The novel patches adhere without the need for further fixation, removing the need for ear canal packing. The proposed material design holds great promise for improving clinical treatments of tympanic membrane perforations.
  • Item
    Gelation Kinetics and Mechanical Properties of Thiol-Tetrazole Methylsulfone Hydrogels Designed for Cell Encapsulation
    (Weinheim : Wiley-VCH, 2022) de Miguel‐Jiménez, Adrián; Ebeling, Bastian; Paez, Julieta I.; Fink‐Straube, Claudia; Pearson, Samuel; del Campo, Aránzazu
    Hydrogel precursors that crosslink within minutes are essential for the development of cell encapsulation matrices and their implementation in automated systems. Such timescales allow sufficient mixing of cells and hydrogel precursors under low shear forces and the achievement of homogeneous networks and cell distributions in the 3D cell culture. The previous work showed that the thiol-tetrazole methylsulfone (TzMS) reaction crosslinks star-poly(ethylene glycol) (PEG) hydrogels within minutes at around physiological pH and can be accelerated or slowed down with small pH changes. The resulting hydrogels are cytocompatible and stable in cell culture conditions. Here, the gelation kinetics and mechanical properties of PEG-based hydrogels formed by thiol-TzMS crosslinking as a function of buffer, crosslinker structure and degree of TzMS functionality are reported. Crosslinkers of different architecture, length and chemical nature (PEG versus peptide) are tested, and degree of TzMS functionality is modified by inclusion of RGD cell-adhesive ligand, all at concentration ranges typically used in cell culture. These studies corroborate that thiol/PEG-4TzMS hydrogels show gelation times and stiffnesses that are suitable for 3D cell encapsulation and tunable through changes in hydrogel composition. The results of this study guide formulation of encapsulating hydrogels for manual and automated 3D cell culture.
  • Item
    PEGylation of Guanidinium and Indole Bearing Poly(methacrylamide)s - Biocompatible Terpolymers for pDNA Delivery
    (Weinheim : Wiley-VCH, 2021) Cokca, Ceren; Hack, Franz J.; Costabel, Daniel; Herwig, Kira; Hülsmann, Juliana; Then, Patrick; Heintzmann, Rainer; Fischer, Dagmar; Peneva, Kalina
    This study describes the first example for shielding of a high performing terpolymer that consists of N-(2-hydroxypropyl)methacrylamide (HPMA), N-(3-guanidinopropyl)methacrylamide (GPMA), and N-(2-indolethyl)methacrylamide monomers (IEMA) by block copolymerization of a polyethylene glycol derivative – poly(nona(ethylene glycol)methyl ether methacrylate) (P(MEO9MA)) via reversible addition–fragmentation chain transfer (RAFT) polymerization. The molecular weight of P(MEO9MA) is varied from 3 to 40 kg mol–1 while the comonomer content of HPMA, GPMA, and IEMA is kept comparable. The influence of P(MEO9MA) block with various molecular weights is investigated over cytotoxicity, plasmid DNA (pDNA) binding, and transfection efficiency of the resulting polyplexes. Overall, the increase in molecular weight of P(MEO9MA) block demonstrates excellent biocompatibility with higher cell viability in L-929 cells and an efficient binding to pDNA at N/P ratio of 2. The significant transfection efficiency in CHO-K1 cells at N/P ratio 20 is obtained for block copolymers with molecular weight of P(MEO9MA) up to 10 kg mol–1. Moreover, a fluorescently labeled analogue of P(MEO9MA), bearing perylene monoimide methacrylamide (PMIM), is introduced as a comonomer in RAFT polymerization. Polyplexes consisting of labeled block copolymer with 20 kg mol–1 of P(MEO9MA) and pDNA are incubated in Hela cells and investigated through structured illumination microscopy (SIM).
  • Item
    Multivalent Protein-Loaded pH-Stable Polymersomes: First Step toward Protein Targeted Therapeutics
    (Weinheim : Wiley-VCH, 2021) Moreno, Silvia; Boye, Susanne; Ajeilat, Hane George Al; Michen, Susanne; Tietze, Stefanie; Voit, Brigitte; Lederer, Albena; Temme, Achim; Appelhans, Dietmar
    Synthetic platforms for mimicking artificial organelles or for designing multivalent protein therapeutics for targeting cell surface, extracellular matrix, and tissues are in the focus of this study. Furthermore, the availability of a multi-functionalized and stimuli-responsive carrier system is required that can be used for sequential in situ and/or post loading of different proteins combined with post-functionalization steps. Until now, polymersomes exhibit excellent key characteristics to fulfill those requirements, which allow specific transport of proteins and the integration of proteins in different locations of polymeric vesicles. Herein, different approaches to fabricate multivalent protein-loaded, pH-responsive, and pH-stable polymersomes are shown, where a combination of therapeutic action and targeting can be achieved, by first choosing two model proteins such as human serum albumin and avidin. Validation of the molecular parameters of the multivalent biohybrids is performed by dynamic light scattering, cryo-TEM, fluorescence spectroscopy, and asymmetrical flow-field flow fractionation combined with light scattering techniques. To demonstrate targeting functions of protein-loaded polymersomes, avidin post-functionalized polymersomes are used for the molecular recognition of biotinylated cell surface receptors. These versatile protein-loaded polymersomes present new opportunities for designing sophisticated biomolecular nanoobjects in the field of (extracellular matrix) protein therapeutics.
  • Item
    Biadhesive Peptides for Assembling Stainless Steel and Compound Loaded Micro-Containers
    (Weinheim : Wiley-VCH, 2019) Apitius, Lina; Buschmann, Sven; Bergs, Christian; Schönauer, David; Jakob, Felix; Pich, Andrij; Schwaneberg, Ulrich
    Biadhesive peptides (peptesives) are an attractive tool for assembling two chemically different materials—for example, stainless steel and polycaprolactone (PCL). Stainless steel is used in medical stents and PCL is used as a biodegradable polymer for fabrication of tissue growth scaffolds and drug delivering micro-containers. Biadhesive peptides are composed of two domains (e.g., dermaseptin S1 and LCI) with different material-binding properties that are separated through a stiff peptide-spacer. The peptesive dermaseptin S1-domain Z-LCI immobilizes antibiotic-loaded PCL micro-containers on stainless steel surfaces. Immobilization is visualized by microscopy and field emission scanning electron microscopy analysis and released antibiotic from the micro-containers is confirmed through growth inhibition of Escherichia coli cells.
  • Item
    Unraveling the Mechanism and Kinetics of Binding of an LCI-eGFP-Polymer for Antifouling Coatings
    (Weinheim : Wiley-VCH, 2021) Söder, Dominik; Garay-Sarmiento, Manuela; Rahimi, Khosrow; Obstals, Fabian; Dedisch, Sarah; Haraszti, Tamás; Davari, Mehdi D.; Jakob, Felix; Heß, Christoph; Schwaneberg, Ulrich; Rodriguez-Emmenegger, Cesar
    The ability of proteins to adsorb irreversibly onto surfaces opens new possibilities to functionalize biological interfaces. Herein, the mechanism and kinetics of adsorption of protein-polymer macromolecules with the ability to equip surfaces with antifouling properties are investigated. These macromolecules consist of the liquid chromatography peak I peptide from which antifouling polymer brushes are grafted using single electron transfer-living radical polymerization. Surface plasmon resonance spectroscopy reveals an adsorption mechanism that follows a Langmuir-type of binding with a strong binding affinity to gold. X-ray reflectivity supports this by proving that the binding occurs exclusively by the peptide. However, the lateral organization at the surface is directed by the cylindrical eGFP. The antifouling functionality of the unimolecular coatings is confirmed by contact with blood plasma. All coatings reduce the fouling from blood plasma by 8894% with only minor effect of the degree of polymerization for the studied range (DP between 101 and 932). The excellent antifouling properties, combined with the ease of polymerization and the straightforward coating procedure make this a very promising antifouling concept for a multiplicity of applications.
  • Item
    Rapid determination of lime requirement by mid-infrared spectroscopy: A promising approach for precision agriculture
    (Weinheim : Wiley-VCH, 2019) Leenen, Matthias; Welp, Gerhard; Gebbers, Robin; Pätzold, Stefan
    Mid-infrared spectroscopy (MIRS) has proven to be a cost-effective, high throughput measurement technique for soil analysis. After multivariate calibration mid-infrared spectra can be used to predict various soil properties, some of which are related to lime requirement (LR). The objective of this study was to test the performance of MIRS for recommending variable rate liming on typical Central European soils in view of precision agriculture applications. In Germany, LR of arable topsoils is commonly derived from the parameters organic matter content (SOM), clay content, and soil pH (CaCl2) as recommended by the Association of German Agricultural Analytical and Research Institutes (VDLUFA). We analysed a total of 458 samples from six locations across Germany, which all revealed large within-field soil heterogeneity. Calcareous topsoils were observed at some positions of three locations (79 samples). To exclude such samples from LR determination, peak height at 2513 cm−1 of the MIR spectrum was used for identification. Spectra-based identification was accurate for carbonate contents > 0.5%. Subsequent LR derivation (LRSPP) from MIRS-PLSR predictions of SOM, clay, and pH (CaCl2) for non-calcareous soil samples using the VDLUFA look-up tables was successful for all locations (R2 = 0.54–0.82; RMSE = 857–1414 kg CaO ha−1). Alternatively, we tested direct LR prediction (LRDP) by MIRS-PLSR and also achieved satisfactory performance (R2 = 0.52–0.77; RMSE = 811–1420 kg CaO ha−1; RPD = 1.44–2.08). Further improvement was achieved by refining the VDLUFA tables towards a stepless algorithm. It can be concluded that MIRS provides a promising approach for precise LR estimation on heterogeneous arable fields. Large sample numbers can be processed with low effort which is an essential prerequisite for variable rate liming in precision agriculture. © 2019 The Authors. Journal of Plant Nutrition and Soil Science published by WILEY-VCH Verlag GmbH & Co. KGaA