Search Results

Now showing 1 - 9 of 9
  • Item
    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties
    (London : Nature Publ. Group, 2021) Phillips, Helen R. P.; Bach, Elizabeth M.; Bartz, Marie L. C.; Bennett, Joanne M.; Beugnon, RĆ©my; Briones, Maria J. I.; Brown, George G.; Ferlian, Olga; Gongalsky, Konstantin B.; Guerra, Carlos A.; Kƶnig-Ries, Birgitta; LĆ³pez-HernĆ”ndez, Danilo; Loss, Scott R.; Marichal, Raphael; Matula, Radim; Minamiya, Yukio; Moos, Jan Hendrik; Moreno, Gerardo; MorĆ³n-RĆ­os, Alejandro; Motohiro, Hasegawa; Muys, Bart; Krebs, Julia J.; Neirynck, Johan; Norgrove, Lindsey; Novo, Marta; Nuutinen, Visa; Nuzzo, Victoria; Mujeeb Rahman, P.; Pansu, Johan; Paudel, Shishir; PĆ©rĆØs, GuĆ©nola; PĆ©rez-Camacho, Lorenzo; Orgiazzi, Alberto; Ponge, Jean-FranƧois; Prietzel, Jƶrg; Rapoport, Irina B.; Rashid, Muhammad Imtiaz; Rebollo, Salvador; RodrĆ­guez, Miguel Ɓ.; Roth, Alexander M.; Rousseau, Guillaume X.; Rozen, Anna; Sayad, Ehsan; Ramirez, Kelly S.; van Schaik, Loes; Scharenbroch, Bryant; Schirrmann, Michael; Schmidt, Olaf; Schrƶder, Boris; Seeber, Julia; Shashkov, Maxim P.; Singh, Jaswinder; Smith, Sandy M.; Steinwandter, Michael; Russell, David J.; Szlavecz, Katalin; Talavera, JosĆ© Antonio; Trigo, Dolores; Tsukamoto, Jiro; Uribe-LĆ³pez, Sheila; de ValenƧa, Anne W.; Virto, IƱigo; Wackett, Adrian A.; Warren, Matthew W.; Webster, Emily R.; Schwarz, Benjamin; Wehr, Nathaniel H.; Whalen, Joann K.; Wironen, Michael B.; Wolters, Volkmar; Wu, Pengfei; Zenkova, Irina V.; Zhang, Weixin; Cameron, Erin K.; Eisenhauer, Nico; Wall, Diana H.; Brose, Ulrich; DecaĆ«ns, Thibaud; Lavelle, Patrick; Loreau, Michel; Mathieu, JĆ©rĆ“me; Mulder, Christian; van der Putten, Wim H.; Rillig, Matthias C.; Thakur, Madhav P.; de Vries, Franciska T.; Wardle, David A.; Ammer, Christian; Ammer, Sabine; Arai, Miwa; Ayuke, Fredrick O.; Baker, Geoff H.; Baretta, Dilmar; Barkusky, Dietmar; BeausĆ©jour, Robin; Bedano, Jose C.; Birkhofer, Klaus; Blanchart, Eric; Blossey, Bernd; Bolger, Thomas; Bradley, Robert L.; Brossard, Michel; Burtis, James C.; Capowiez, Yvan; Cavagnaro, Timothy R.; Choi, Amy; Clause, Julia; Cluzeau, Daniel; Coors, Anja; Crotty, Felicity V.; Crumsey, Jasmine M.; DĆ”valos, Andrea; CosĆ­n, DarĆ­o J. DĆ­az; Dobson, Annise M.; DomĆ­nguez, AnahĆ­; Duhour, AndrĆ©s Esteban; van Eekeren, Nick; Emmerling, Christoph; Falco, Liliana B.; FernĆ”ndez, Rosa; Fonte, Steven J.; Fragoso, Carlos; Franco, AndrĆ© L. C.; Fusilero, Abegail; Geraskina, Anna P.; Gholami, Shaieste; GonzĆ”lez, Grizelle; Gundale, Michael J.; LĆ³pez, MĆ³nica GutiĆ©rrez; Hackenberger, Branimir K.; Hackenberger, Davorka K.; HernĆ”ndez, Luis M.; Hirth, Jeff R.; Hishi, Takuo; Holdsworth, Andrew R.; Holmstrup, Martin; Hopfensperger, Kristine N.; Lwanga, Esperanza Huerta; Huhta, Veikko; Hurisso, Tunsisa T.; Iannone, Basil V.; Iordache, Madalina; Irmler, Ulrich; Ivask, Mari; JesĆŗs, Juan B.; Johnson-Maynard, Jodi L.; Joschko, Monika; Kaneko, Nobuhiro; Kanianska, Radoslava; Keith, Aidan M.; Kernecker, Maria L.; KonĆ©, Armand W.; Kooch, Yahya; Kukkonen, Sanna T.; Lalthanzara, H.; Lammel, Daniel R.; Lebedev, Iurii M.; Le Cadre, Edith; Lincoln, Noa K.
    Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.
  • Item
    Complete Genome Sequence of a New Firmicutes Species Isolated from Anaerobic Biomass Hydrolysis
    (Washington, DC : American Soc. for Microbiology, 2017) Abendroth, Christian; Hahnke, Sarah; CodoƱer, Francisco M.; Klocke, Michael; Luschnig, Olaf; Porcar, Manuel
    A new Firmicutes isolate, strain HV4-6-A5C, was obtained from the hydrolysis stage of a mesophilic and anaerobic two-stage lab-scale leach-bed system for biomethanation of fresh grass. It is assumed that the bacterial isolate contributes to plant biomass degradation. Here, we report a draft annotated genome sequence of this organism. Ā© 2017 Abendroth et al.
  • Item
    Complete genome sequence of a new Bacteroidaceae bacterium isolated from anaerobic biomass digestion
    (Washington, DC : American Society for Microbiology, 2020) Hahnke, Sarah; Abendroth, Christian; Pascual, Javier; Langer, Thomas; CodoƱer, Francisco M.; Ramm, Patrice; Klocke, Michael; Luschnig, Olaf; Porcare, Manuel
    Here, we present the genome sequence and annotation of HV4-6-C5C, a bacterial strain isolated from a mesophilic two-stage laboratory-scale leach bed biogas reactor system. Strain HV4-6-C5C may represent a new genus of the family Bacteroidaceae and may have a key role in acidogenesis and acetogenesis steps during anaerobic biomass digestion. Ā© 2019 Hahnke et al.
  • Item
    Draft Genome Sequence of a New Oscillospiraceae Bacterium Isolated from Anaerobic Digestion of Biomass
    (Washington, DC : American Society for Microbiology, 2020) Pascual, Javier; Hahnke, Sarah; Abendroth, Christian; Langer, Thomas; Ramm, Patrice; Klocke, Michael; Luschnig, Olaf; Porcar, Manuel
    Here, we present the genome sequence and annotation of the novel bacterial strain HV4-5-C5C, which may represent a new genus within the family Oscillospiraceae (order Eubacteriales). This strain is a potential keystone species in the hydrolysis of complex polymers during anaerobic digestion of biomass. Ā© 2020 Pascual et al.
  • Item
    Solar spectral conversion for improving the photosynthetic activity in algae reactors
    (London : Nature Publishing Group, 2013) Wondraczek, L.; Batentschuk, M.; Schmidt, M.A.; Borchardt, R.; Scheiner, S.; Seemann, B.; Schweizer, P.; Brabec, C.J.
    Sustainable biomass production is expected to be one of the major supporting pillars for future energy supply, as well as for renewable material provision. Algal beds represent an exciting resource for biomass/biofuel, fine chemicals and CO2 storage. Similar to other solar energy harvesting techniques, the efficiency of algal photosynthesis depends on the spectral overlap between solar irradiation and chloroplast absorption. Here we demonstrate that spectral conversion can be employed to significantly improve biomass growth and oxygen production rate in closed-cycle algae reactors. For this purpose, we adapt a photoluminescent phosphor of the type Ca 0.59Sr0.40Eu0.01S, which enables efficient conversion of the green part of the incoming spectrum into red light to better match the Qy peak of chlorophyll b. Integration of a Ca 0.59Sr0.40Eu0.01S backlight converter into a flat panel algae reactor filled with Haematococcus pluvialis as a model species results in significantly increased photosynthetic activity and algae reproduction rate.
  • Item
    Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology
    (Katlenburg-Lindau [u.a.] : Copernicus, 2020) De Oliveira Garcia, Wagner; Amann, Thorben; Hartmann, Jens; Karstens, Kristine; Popp, Alexander; Boysen, Lena R.; Smith, Pete; Goll, Daniel
    Limiting global mean temperature changes to well below 2 Ā°C likely requires a rapid and large-scale deployment of negative emission technologies (NETs). Assessments so far have shown a high potential of biomass-based terrestrial NETs, but only a few assessments have included effects of the commonly found nutrient-deficient soils on biomass production. Here, we investigate the deployment of enhanced weathering (EW) to supply nutrients to areas of afforestation-reforestation and naturally growing forests (AR) and bioenergy grasses (BG) that are deficient in phosphorus (P), besides the impacts on soil hydrology. Using stoichiometric ratios and biomass estimates from two established vegetation models, we calculated the nutrient demand of AR and BG. Insufficient geogenic P supply limits C storage in biomass. For a mean P demand by AR and a lowgeogenic-P-supply scenario, AR would sequester 119 Gt C in biomass; for a high-geogenic-P-supply and low-AR-Pdemand scenario, 187 Gt C would be sequestered in biomass; and for a low geogenic P supply and high AR P demand, only 92 GtC would be accumulated by biomass. An average amount of āˆ¼ 150 Gt basalt powder applied for EW would be needed to close global P gaps and completely sequester projected amounts of 190 Gt C during the years 2006-2099 for the mean AR P demand scenario (2-362 Gt basalt powder for the low-AR-P-demand and for the high-AR-P-demand scenarios would be necessary, respectively). The average potential of carbon sequestration by EW until 2099 is āˆ¼ 12 GtC (āˆ¼ 0:2-āˆ¼ 27 Gt C) for the specified scenarios (excluding additional carbon sequestration via alkalinity production). For BG, 8 kg basaltm2 a1 might, on average, replenish the exported potassium (K) and P by harvest. Using pedotransfer functions, we show that the impacts of basalt powder application on soil hydraulic conductivity and plant-Available water, to close predicted P gaps, would depend on basalt and soil texture, but in general the impacts are marginal. We show that EW could potentially close the projected P gaps of an AR scenario and nutrients exported by BG harvest, which would decrease or replace the use of industrial fertilizers. Besides that, EW ameliorates the soil's capacity to retain nutrients and soil pH and replenish soil nutrient pools. Lastly, EW application could improve plant-Available-water capacity depending on deployed amounts of rock powder - adding a new dimension to the coupling of land-based biomass NETs with EW. Ā© 2020 Royal Society of Chemistry. All rights reserved.
  • Item
    Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors
    (London : BioMed Central Ltd., 2018) Maus, I.; Rumming, M.; Bergmann, I.; Heeg, K.; Pohl, M.; Nettmann, E.; Jaenicke, S.; Blom, J.; PĆ¼hler, A.; SchlĆ¼ter, A.; Sczyrba, A.; Klocke, M.
    Background: Previous studies on the Miscellaneous Crenarchaeota Group, recently assigned to the novel archaeal phylum Bathyarchaeota, reported on the dominance of these Archaea within the anaerobic carbohydrate cycle performed by the deep marine biosphere. For the first time, members of this phylum were identified also in mesophilic and thermophilic biogas-forming biofilms and characterized in detail. Results: Metagenome shotgun libraries of biofilm microbiomes were sequenced using the Illumina MiSeq system. Taxonomic classification revealed that between 0.1 and 2% of all classified sequences were assigned to Bathyarchaeota. Individual metagenome assemblies followed by genome binning resulted in the reconstruction of five metagenome-assembled genomes (MAGs) of Bathyarchaeota. MAGs were estimated to be 65-92% complete, ranging in their genome sizes from 1.1 to 2.0 Mb. Phylogenetic classification based on core gene sets confirmed their placement within the phylum Bathyarchaeota clustering as a separate group diverging from most of the recently known Bathyarchaeota clusters. The genetic repertoire of these MAGs indicated an energy metabolism based on carbohydrate and amino acid fermentation featuring the potential for extracellular hydrolysis of cellulose, cellobiose as well as proteins. In addition, corresponding transporter systems were identified. Furthermore, genes encoding enzymes for the utilization of carbon monoxide and/or carbon dioxide via the Wood-Ljungdahl pathway were detected. Conclusions: For the members of Bathyarchaeota detected in the biofilm microbiomes, a hydrolytic lifestyle is proposed. This is the first study indicating that Bathyarchaeota members contribute presumably to hydrolysis and subsequent fermentation of organic substrates within biotechnological biogas production processes.
  • Item
    Understanding the uncertainty in global forest carbon turnover
    (Katlenburg-Lindau [u.a.] : Copernicus, 2020) Pugh, Thomas A.M.; Rademacher, Tim; Shafer, Sarah L.; Steinkamp, Jƶrg; Barichivich, Jonathan; Beckage, Brian; Haverd, Vanessa; Harper, Anna; Heinke, Jens; Nishina, Kazuya; Rammig, Anja; Sato, Hisashi; Arneth, Almut; Hantson, Stijn; Hickler, Thomas; Kautz, Markus; Quesada, Benjamin; Smith, Benjamin; Thonicke, Kirsten
    The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle, with both recent historical baselines and future responses to environmental change poorly constrained by available observations. In the absence of large-scale observations, models used for global assessments tend to fall back on simplified assumptions of the turnover rates of biomass and soil carbon pools. In this study, the biomass carbon turnover times calculated by an ensemble of contemporary terrestrial biosphere models (TBMs) are analysed to assess their current capability to accurately estimate biomass carbon turnover times in forests and how these times are anticipated to change in the future. Modelled baseline 1985-2014 global average forest biomass turnover times vary from 12.2 to 23.5 years between TBMs. TBM differences in phenological processes, which control allocation to, and turnover rate of, leaves and fine roots, are as important as tree mortality with regard to explaining the variation in total turnover among TBMs. The different governing mechanisms exhibited by each TBM result in a wide range of plausible turnover time projections for the end of the century. Based on these simulations, it is not possible to draw robust conclusions regarding likely future changes in turnover time, and thus biomass change, for different regions. Both spatial and temporal uncertainty in turnover time are strongly linked to model assumptions concerning plant functional type distributions and their controls. Thirteen model-based hypotheses of controls on turnover time are identified, along with recommendations for pragmatic steps to test them using existing and novel observations. Efforts to resolve uncertainty in turnover time, and thus its impacts on the future evolution of biomass carbon stocks across the world's forests, will need to address both mortality and establishment components of forest demography, as well as allocation of carbon to woody versus non-woody biomass growth. Ā© 2020 SPIE. All rights reserved.
  • Item
    Multi-Product Lactic Acid Bacteria Fermentations: A Review
    (Basel : MDPI AG, 2020) Mora-Villalobos, JosĆ© AnĆ­bal; Montero-Zamora, JĆ©ssica; Barboza, Natalia; Rojas-Garbanzo, Carolina; Usaga, Jessie; Redondo-Solano, Mauricio; Schroedter, Linda; Olszewska-Widdrat, Agata; LĆ³pez-GĆ³mez, JosĆ© Pablo
    Industrial biotechnology is a continuously expanding field focused on the application of microorganisms to produce chemicals using renewable sources as substrates. Currently, an increasing interest in new versatile processes, able to utilize a variety of substrates to obtain diverse products, can be observed. A robust microbial strain is critical in the creation of such processes. Lactic acid bacteria (LAB) are used to produce a wide variety of chemicals with high commercial interest. Lactic acid (LA) is the most predominant industrial product obtained from LAB fermentations, and its production is forecasted to rise as the result of the increasing demand of polylactic acid. Hence, the creation of new ways to revalorize LA production processes is of high interest and could further enhance its economic value. Therefore, this review explores some co-products of LA fermentations, derived from LAB, with special focus on bacteriocins, lipoteichoic acid, and probiotics. Finally, a multi-product process involving LA and the other compounds of interest is proposed.