Search Results

Now showing 1 - 10 of 58
  • Item
    The concerns of the young protesters are justified: A statement by Scientists for Future concerning the protests for more climate protection
    (München : Oekom Verl., 2019) Hagedorn, Gregor; Loew, Thomas; Seneviratne, Sonia I.; Lucht, Wolfgang; Beck, Marie-Luise; Hesse, Janina; Knutti, Reto; Quaschning, Volker; Schleimer, Jan-Hendrik; Mattauch, Linus; Breyer, Christian; Hübener, Heike; Kirchengast, Gottfried; Chodura, Alice; Clausen, Jens; Creutzig, Felix; Darbi, Marianne; Daub, Claus-Heinrich; Ekardt, Felix; Göpel, Maja; Hardt, Judith N.; Hertin, Julia; Hickler, Thomas; Köhncke, Arnulf; Köster, Stephan; Krohmer, Julia; Kromp-Kolb, Helga; Leinfelder, Reinhold; Mederake, Linda; Neuhaus, Michael; Rahmstorf, Stefan; Schmidt, Christine; Schneider, Christoph; Schneider, Gerhard; Seppelt, Ralf; Spindler, Uli; Springmann, Marco; Staab, Katharina; Stocker, Thomas F.; Steininger, Karl; Hirschhausen, Eckart von; Winter, Susanne; Wittau, Martin; Zens, Josef
    In March 2019, German-speaking scientists and scholars calling themselves Scientists for Future, published a statement in support of the youth protesters in Germany, Austria, and Switzerland (Fridays for Future, Klimastreik/Climate Strike), verifying the scientific evidence that the youth protestors refer to. In this article, they provide the full text of the statement, including the list of supporting facts (in both English and German) as well as an analysis of the results and impacts of the statement. Furthermore, they reflect on the challenges for scientists and scholars who feel a dual responsibility: on the one hand, to remain independent and politically neutral, and, on the other hand, to inform and warn societies of the dangers that lie ahead. © 2019 G. Hagedorn et al.; licensee oekom verlag.This Open Access article is published under the terms of the Creative Commons Attribution License CCBY4.0 (http://creativecommons.org/licenses/by/4.0).
  • Item
    Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation
    (San Francisco, CA : Public Library of Science (PLoS), 2013) Winck, F.V.; Arvidsson, S.; Riaño-Pachón, D.M.; Hempe, S.; Koseska, A.; Nikoloski, Z.; Gomez, D.A.U.; Rupprecht, J.; Mueller-Roeber, B.
    The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO 2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO2 response regulator 1) and Lcr2 (Low-CO2 response regulator 2 ), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can serve as a basis for future functional studies of transcriptional regulator genes and genomic regulatory elements in Chlamydomonas.
  • Item
    Trajectories of the Earth System in the Anthropocene
    (Washington, DC : NAS, 2018) Steffen, Will; Rockström, Johan; Richardson, Katherine; Lenton, Timothy M.; Folke, Carl; Liverman, Diana; Summerhayes, Colin P.; Barnosky, Anthony D.; Cornell, Sarah E.; Crucifix, Michel; Donges, Jonathan F.; Fetzer, Ingo; Lade, Steven J.; Scheffer, Marten; Winkelmann, Ricarda; Schellnhuber, Hans Joachim
    We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a “Hothouse Earth” pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Collective human action is required to steer the Earth System away from a potential threshold and stabilize it in a habitable interglacial-like state. Such action entails stewardship of the entire Earth System—biosphere, climate, and societies—and could include decarbonization of the global economy, enhancement of biosphere carbon sinks, behavioral changes, technological innovations, new governance arrangements, and transformed social values.
  • Item
    Timing cellular decision making under noise via cell-cell communication
    (San Francisco, CA : Public Library of Science (PLoS), 2009) Koseska, A.; Zaikin, A.; Kurths, J.; García-Ojalvo, J.
    Many cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are dominated by fluctuations that can induce random jumps between alternative cellular states. Here we show, via theoretical modeling of a population of noise-driven bistable genetic switches, that reliable timing of decision-making processes can be accomplished for large enough population sizes, as long as cells are globally coupled by chemical means. In the light of these results, we conjecture that cell proliferation, in the presence of cell-cell communication, could provide a mechanism for reliable decision making in the presence of noise, by triggering cellular transitions only when the whole cell population reaches a certain size. In other words, the summation performed by the cell population would average out the noise and reduce its detrimental impact.
  • Item
    Bioenergy for climate change mitigation: Scale and sustainability
    (Oxford : Wiley-Blackwell, 2021) Calvin, Katherine; Cowie, Annette; Berndes, Göran; Arneth, Almut; Cherubini, Francesco; Portugal‐Pereira, Joana; Grassi, Giacomo; House, Jo; Johnson, Francis X.; Popp, Alexander; Rounsevell, Mark; Slade, Raphael; Smith, Pete
    Many global climate change mitigation pathways presented in IPCC assessment reports rely heavily on the deployment of bioenergy, often used in conjunction with carbon capture and storage. We review the literature on bioenergy use for climate change mitigation, including studies that use top-down integrated assessment models or bottom-up modelling, and studies that do not rely on modelling. We summarize the state of knowledge concerning potential co-benefits and adverse side effects of bioenergy systems and discuss limitations of modelling studies used to analyse consequences of bioenergy expansion. The implications of bioenergy supply on mitigation and other sustainability criteria are context dependent and influenced by feedstock, management regime, climatic region, scale of deployment and how bioenergy alters energy systems and land use. Depending on previous land use, widespread deployment of monoculture plantations may contribute to mitigation but can cause negative impacts across a range of other sustainability criteria. Strategic integration of new biomass supply systems into existing agriculture and forest landscapes may result in less mitigation but can contribute positively to other sustainability objectives. There is considerable variation in evaluations of how sustainability challenges evolve as the scale of bioenergy deployment increases, due to limitations of existing models, and uncertainty over the future context with respect to the many variables that influence alternative uses of biomass and land. Integrative policies, coordinated institutions and improved governance mechanisms to enhance co-benefits and minimize adverse side effects can reduce the risks of large-scale deployment of bioenergy. Further, conservation and efficiency measures for energy, land and biomass can support greater flexibility in achieving climate change mitigation and adaptation.
  • Item
    Biomass production in plantations: Land constraints increase dependency on irrigation water
    (Oxford : Wiley-Blackwell, 2018) Jans, Yvonne; Berndes, Göran; Heinke, Jens; Lucht, Wolfgang; Gerten, Dieter
    Integrated assessment model scenarios project rising deployment of biomass-using energy systems in climate change mitigation scenarios. But there is concern that bioenergy deployment will increase competition for land and water resources and obstruct objectives such as nature protection, the preservation of carbon-rich ecosystems, and food security. To study the relative importance of water and land availability as biophysical constraints to bioenergy deployment at a global scale, we use a process-detailed, spatially explicit biosphere model to simulate rain-fed and irrigated biomass plantation supply along with the corresponding water consumption for different scenarios concerning availability of land and water resources. We find that global plantation supplies are mainly limited by land availability and only secondarily by freshwater availability. As a theoretical upper limit, if all suitable lands on Earth, besides land currently used in agriculture, were available for bioenergy plantations (“Food first” scenario), total plantation supply would be in the range 2,010–2,300 EJ/year depending on water availability and use. Excluding all currently protected areas reduces the supply by 60%. Excluding also areas where conversion to biomass plantations causes carbon emissions that might be considered unacceptably high will reduce the total plantation supply further. For example, excluding all areas where soil and vegetation carbon stocks exceed 150 tC/ha (“Carbon threshold savanna” scenario) reduces the supply to 170–290 EJ/year. With decreasing land availability, the amount of water available for irrigation becomes vitally important. In the least restrictive land availability scenario (“Food first”), up to 77% of global plantation biomass supply is obtained without additional irrigation. This share is reduced to 31% for the most restrictive “Carbon threshold savanna” scenario. The results highlight the critical—and geographically varying—importance of co-managing land and water resources if substantial contributions of bioenergy are to be reached in mitigation portfolios.
  • Item
    Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests
    (Oxford [u.a.] : Blackwell Science, 2017) Thurner, Martin; Beer, Christian; Ciais, Philippe; Friend, Andrew D.; Ito, Akihiko; Kleidon, Axel; Lomas, Mark R.; Quegan, Shaun; Rademacher, Tim T.; Schaphoff, Sibyll; Tum, Markus; Wiltshire, Andy; Carvalhais, Nuno
    Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation-based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects and pathogens are not explicitly treated in these models.
  • Item
    Biodiversity research: Data without theory-theory without data
    (Lausanne : Frontiers Media, 2015) Rillig, Matthias C.; Kiessling, Wolfgang; Borsch, Thomas; Gessler, Arthur; Greenwood, Alex D.; Hofer, Heribert; Joshi, Jasmin; Schröder, Boris; Thonicke, Kirsten; Tockner, Klement; Weisshuhn, Karoline; Jeltsch, Florian
    [No abstract available]
  • Item
    LivWell: a sub-national Dataset on the Living Conditions of Women and their Well-being for 52 Countries
    (London : Nature Publ. Group, 2022) Belmin, Camille; Hoffmann, Roman; Elkasabi, Mahmoud; Pichler, Peter-Paul
    Data on women’s living conditions and socio-economic development are important for understanding and addressing the pronounced challenges and inequalities faced by women worldwide. While such information is increasingly available at the national level, comparable data at the sub-national level are missing. We here present the LivWell global longitudinal dataset, which includes a set of key indicators on women’s socio-economic status, health and well-being, access to basic services and demographic outcomes. It covers 447 regions in 52 countries and includes a total of 265 different indicators. The majority of these are based on 199 Demographic and Health Surveys (DHS) for the period 1990–2019 and are complemented by extensive information on socio-economic and climatic conditions in the respective regions. The resulting dataset offers various opportunities for policy-relevant research on gender inequality, inclusive development and demographic trends at the sub-national level.
  • Item
    Small-Signal Stability of Multi-Converter Infeed Power Grids with Symmetry
    (Basel : MDPI, 2021) Yu, Jiawei; Yang, Ziqian; Kurths, Jurgen; Zhan, Meng
    Traditional power systems have been gradually shifting to power-electronic-based ones, with more power electronic devices (including converters) incorporated recently. Faced with much more complicated dynamics, it is a great challenge to uncover its physical mechanisms for system stability and/or instability (oscillation). In this paper, we first establish a nonlinear model of a multi-converter power system within the DC-link voltage timescale, from the first principle. Then, we obtain a linearized model with the associated characteristic matrix, whose eigenvalues determine the system stability, and finally get independent subsystems by using symmetry approximation conditions under the assumptions that all converters’ parameters and their susceptance to the infinite bus (Bg) are identical. Based on these mathematical analyses, we find that the whole system can be decomposed into several equivalent single-converter systems and its small-signal stability is solely determined by a simple converter system connected to an infinite bus under the same susceptance Bg. These results of large-scale multi-converter analysis help to understand the power-electronic-based power system dynamics, such as renewable energy integration. As well, they are expected to stimulate broad interests among researchers in the fields of network dynamics theory and applications.