Search Results

Now showing 1 - 3 of 3
  • Item
    Influence of core size and capping ligand of gold nanoparticles on the desorption/ionization efficiency of small biomolecules in AP‐SALDI‐MS
    (Hoboke, NJ : Wiley, 2020) Liu, Zhen; Zhang, Peng; Pyttlik, Andrea; Kraus, Tobias; Volmer, Dietrich A.
    Gold nanoparticles (AuNP) are frequently used in surface‐assisted laser desorption/ionization mass spectrometry (SALDI‐MS) for analysis of biomolecules because they exhibit suitable thermal and chemical properties as well as strong surface plasmonic effects. Moreover, the structures of AuNP can be controlled by well‐established synthesis protocols. This was important in the present work, which studied the influence of the nanoparticles’ structures on atmospheric pressure (AP)‐SALDI‐MS performance. A series of AuNP with different core sizes and capping ligands were investigated, to examine the desorption/ionization efficiency (DIE) under AP‐SALDI conditions. The results showed that both the AuNP core size as well as the nature of the surface ligand had a strong influence on DIE. DIE increased with the size of the AuNP and the hydrophobicity of the ligands. Chemical interactions between ligand and analytes also influenced DIE. Moreover, we discovered that removing the organic ligands from the deposited AuNP substrate layer by simple laser irradiation prior to LDI further amplified DIE values. The optimized AuNP were successfully used to analyze a wide arrange of different low molecular weight biomolecules as well as a crude pig brain extract, which readily demonstrated the ability of the technique to detect a wide range of lipid species within highly complex samples.
  • Item
    Phosphorus‐Based Composites as Anode Materials for Advanced Alkali Metal Ion Batteries
    (Hoboke, NJ : Wiley, 2020) Zhou, Junhua; Shi, Qitao; Ullah, Sami; Yang, Xiaoqin; Bachmatiuk, Alicja; Yang, Ruizhi; Rummeli, Mark H.
    Alkaline metal ion batteries, such as lithium‐ion batteries have been increasingly adopted in consumer electronics, electric vehicles, and large power grids because of their high energy density, power density and working voltage, and long cycle life. Phosphorus‐based materials including phosphorus anodes and metal phosphides with high theoretical capacity, natural abundance, and environmental friendliness show great potential as negative electrodes for alkaline metal ion batteries. In this review, based on the understanding of the storage mechanism of alkali metal ions, the scientific challenges are discussed, the preparation methods and solutions to address these challenges are summarized, the application prospects are demonstrated, and finally possible future research directions of phosphorus‐based materials are provided.
  • Item
    3D Self‐Assembled Microelectronic Devices: Concepts, Materials, Applications
    (Hoboke, NJ : Wiley, 2020) Karnaushenko, Daniil; Kang, Tong; Bandari, Vineeth K.; Zhu, Feng; Schmidt, Oliver G.
    Modern microelectronic systems and their components are essentially 3D devices that have become smaller and lighter in order to improve performance and reduce costs. To maintain this trend, novel materials and technologies are required that provide more structural freedom in 3D over conventional microelectronics, as well as easier parallel fabrication routes while maintaining compatability with existing manufacturing methods. Self‐assembly of initially planar membranes into complex 3D architectures offers a wealth of opportunities to accommodate thin‐film microelectronic functionalities in devices and systems possessing improved performance and higher integration density. Existing work in this field, with a focus on components constructed from 3D self‐assembly, is reviewed, and an outlook on their application potential in tomorrow's microelectronics world is provided.