Search Results

Now showing 1 - 3 of 3
  • Item
    From Paris to Makkah: heat stress risks for Muslim pilgrims at 1.5 °C and 2 °C
    (Bristol : IOP Publ., 2021-2-9) Saeed, Fahad; Schleussner, Carl-Friedrich; Almazroui, Mansour
    The pilgrimages of Muslims to Makkah (Hajj and Umrah) is one of the largest religious gatherings in the world which draws millions of people from around 180 countries each year. Heat stress during summer has led to health impacts including morbidity and mortality in the past, which is likely to worsen due to global warming. Here we investigate the impacts of increasing heat stress during the peak summer months over Makkah at present levels of warming as well as under Paris Agreement's targets of 1.5 °C and 2 °C global mean temperature increase above pre-industrial levels. This is achieved by using multi member ensemble projections from the half a degree additional warming, prognosis and projected impacts project. We find a substantial increase in the exceedance probabilities of dangerous thresholds (wet-bulb temperature >24.6 °C) in 1.5 °C and 2 °C warmer worlds over the summer months. For the 3 hottest months, August, September and October, even thresholds of extremely dangerous (wet-bulb temperature >29.1 °C) health risks may be surpassed. An increase in exceedance probability of dangerous threshold is projected by two and three times in 1.5 °C and 2 °C warmer worlds respectively for May as compared to the reference climate. September shows the highest increase in the exceedance probability of extremely dangerous threshold which is increased to 4 and 13 times in 1.5 °C and 2 °C warmer worlds respectively. Based on the indicators of hazard, exposure and vulnerability, we carried out probabilistic risk analysis of life-threatening heat stroke over Makkah. A ten time increase in the heat stroke risk at higher wet-bulb temperatures for each month is projected in 2 °C warmer world. If warming was limited to 1.5 °C world, the risk would only increase by about five times, or half the risk of 2 °C. Our results indicate that substantial heat related risks during Hajj and Umrah happening over peak summer months, as it is the case for Hajj during this decade, will require substantial adaptation measures and would negatively affect the performance of the rite. Stringent mitigation actions to keep the global temperature to 1.5 °C can reduce the risks of heat related illnesses and thereby reduce the non-economic loss and damage related to one of the central pillars of a world religion.
  • Item
    Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty
    (Bristol : IOP Publ., 2018) Schleussner, Carl-Friedrich; Deryng, Delphine; Müller, Christoph; Elliott, Joshua; Saeed, Fahad; Folberth, Christian; Liu, Wenfeng; Wang, Xuhui; Pugh, Thomas A. M.; Thiery, Wim; Seneviratne, Sonia I.; Rogelj, Joeri
    Following the adoption of the Paris Agreement, there has been an increasing interest in quantifying impacts at discrete levels of global mean temperature (GMT) increase such as 1.5 °C and 2 °C above pre-industrial levels. Consequences of anthropogenic greenhouse gas emissions on agricultural productivity have direct and immediate relevance for human societies. Future crop yields will be affected by anthropogenic climate change as well as direct effects of emissions such as CO2 fertilization. At the same time, the climate sensitivity to future emissions is uncertain. Here we investigate the sensitivity of future crop yield projections with a set of global gridded crop models for four major staple crops at 1.5 °C and 2 °C warming above pre-industrial levels, as well as at different CO2 levels determined by similar probabilities to lead to 1.5 °C and 2 °C, using climate forcing data from the Half a degree Additional warming, Prognosis and Projected Impacts project. For the same CO2 forcing, we find consistent negative effects of half a degree warming on productivity in most world regions. Increasing CO2 concentrations consistent with these warming levels have potentially stronger but highly uncertain effects than 0.5 °C warming increments. Half a degree warming will also lead to more extreme low yields, in particular over tropical regions. Our results indicate that GMT change alone is insufficient to determine future impacts on crop productivity.
  • Item
    Robust changes in tropical rainy season length at 1.5 °C and 2 °C
    (Bristol : IOP Publ., 2018) Saeed, Fahad; Bethke, Ingo; Fischer, Erich; Legutke, Stephanie; Shiogama, Hideo; Stone, Dáithí A.; Schleussner, Carl-Friedrich
    Changes in the hydrological cycle are among the aspects of climate change most relevant for human systems and ecosystems. Besides trends in overall wetting or drying, changes in temporal characteristics of wetting and drying are of crucial importance in determining the climate hazard posed by such changes. This is particularly the case for tropical regions, where most precipitation occurs during the rainy season and changes in rainy season onset and length have substantial consequences. Here we present projections for changes in tropical rainy season lengths for mean temperature increase of 1.5 °C and 2 °C above pre-industrial levels. Based on multi-ensemble quasi-stationary simulations at these warming levels, our analysis indicates robust changes in rainy season characteristics in large parts of the tropics despite substantial natural variability. Specifically, we report a robust shortening of the rainy season for all of tropical Africa as well as north-east Brazil. About 27% of West Africa is projected to experience robust changes in the rainy season length with a mean shortening of about 7 days under 1.5 °C. We find that changes in the temporal characteristics are largely unrelated to changes in overall precipitation, highlighting the importance of investigating both separately.