Search Results

Now showing 1 - 10 of 173
  • Item
    Agent-based modeling to integrate elements from different disciplines for ambitious climate policy
    (Malden, MA : Wiley-Blackwell, 2022) Savin, Ivan; Creutzig, Felix; Filatova, Tatiana; Foramitti, Joël; Konc, Théo; Niamir, Leila; Safarzynska, Karolina; van den Bergh, Jeroen
    Ambitious climate mitigation policies face social and political resistance. One reason is that existing policies insufficiently capture the diversity of relevant insights from the social sciences about potential policy outcomes. We argue that agent-based models can serve as a powerful tool for integration of elements from different disciplines. Having such a common platform will enable a more complete assessment of climate policies, in terms of criteria like effectiveness, equity and public support. This article is categorized under: Climate Models and Modeling > Knowledge Generation with Models The Carbon Economy and Climate Mitigation > Policies, Instruments, Lifestyles, Behavior Policy and Governance > Multilevel and Transnational Climate Change Governance.
  • Item
    Human alterations of the terrestrial water cycle through land management
    (Göttingen : Copernicus GmbH, 2008) Rost, S.; Gerten, D.; Heyder, U.
    This study quantifies current and potential future changes in transpiration, evaporation, interception loss and river discharge in response to land use change, irrigation and climate change, by performing several distinct simulations within the consistent hydrology and biosphere modeling framework LPJmL (Lund-Potsdam-Jena managed Land). We distinguished two irrigation simulations: a water limited one in which irrigation was restricted by local renewable water resources (ILIM), and a potential one in which no such limitation was assumed but withdrawals from deep groundwater or remote rivers allowed (IPOT). We found that the effect of historical land use change as compared to potential natural vegetation was pronounced, including a reduction in interception loss and transpiration by 25.9% and 10.6%, respectively, whereas river discharge increased by 6.6% (climate conditions of 1991-2000). Furthermore, we estimated that about 1170km3yr-1 of irrigation water could be withdrawn from local renewable water resources (in ILIM), which resulted in a reduction of river discharge by 1.5%. However, up to 1660km3yr-1 of water withdrawals were required in addition under the assumption that optimal growth of irrigated crops was sustained (IPOT), which resulted in a slight net increase in global river discharge by 2.0% due to return flows. Under the HadCM3 A2 climate and emission scenario, climate change alone will decrease total evapotranspiration by 1.5% and river discharge by 0.9% in 2046-2055 compared to 1991-2000 average due to changes in precipitation patterns, a decrease in global precipitation amount, and the net effect of CO2 fertilization. A doubling of agricultural land in 2046-2055 compared to 1991-2000 average as proposed by the IMAGE land use change scenario will result in a decrease in total evapotranspiration by 2.5% and in an increase in river discharge by 3.9%. That is, the effects of land use change in the future will be comparable in magnitude to the effects of climate change in this particular scenario. On present irrigated areas future water withdrawal will increase especially in regions where climate changes towards warmer and dryer conditions will be pronounced.
  • Item
    Wirkung von Klimaänderungen auf Vegetation: Entwicklung eines allgemeinen Modells für die Klimafolgenforschung : Abschlußbericht
    (Potsdam : Potsdam-Institut für Klimaforschung, 1999) Cramer, Wolfgang
    [no abstract available]
  • Item
    Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events
    (London : Nature Publishing Group, 2017) Mann, M.E.; Rahmstorf, S.; Kornhuber, K.; Steinman, B.A.; Miller, S.K.; Coumou, D.
    Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves within a particular wavelength range (zonal wavenumber 6-8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the zonal mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art ("CMIP5") historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability.
  • Item
    Assessment of climate change impacts on water resources in three representative ukrainian catchments using eco-hydrological modelling
    (Basel : MDPI AG, 2017) Didovets, I.; Lobanova, A.; Bronstert, A.; Snizhko, S.; Maule, C.F.; Krysanova, V.
    The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model-Soil and Water Integrated Model (SWIM)-was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.
  • Item
    Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study
    (Amsterdam : Elsevier, 2021) Zhao, Qi; Guo, Yuming; Ye, Tingting; Gasparrini, Antonio; Tong, Shilu; Overcenco, Ala; Urban, Aleš; Schneider, Alexandra; Entezari, Alireza; Vicedo-Cabrera, Ana Maria; Zanobetti, Antonella; Analitis, Antonis; Zeka, Ariana; Tobias, Aurelio; Nunes, Baltazar; Alahmad, Barrak; Armstrong, Ben; Forsberg, Bertil; Pan, Shih-Chun; Íñiguez, Carmen; Ameling, Caroline; De la Cruz Valencia, César; Åström, Christofer; Houthuijs, Danny; Dung, Do Van; Royé, Dominic; Indermitte, Ene; Lavigne, Eric; Mayvaneh, Fatemeh; Acquaotta, Fiorella; de'Donato, Francesca; Di Ruscio, Francesco; Sera, Francesco; Carrasco-Escobar, Gabriel; Kan, Haidong; Orru, Hans; Kim, Ho; Holobaca, Iulian-Horia; Kyselý, Jan; Madureira, Joana; Schwartz, Joel; Jaakkola, Jouni J. K.; Katsouyanni, Klea; Hurtado Diaz, Magali; Ragettli, Martina S.; Hashizume, Masahiro; Pascal, Mathilde; de Sousa Zanotti Stagliorio Coélho, Micheline; Valdés Ortega, Nicolás; Ryti, Niilo; Scovronick, Noah; Michelozzi, Paola; Matus Correa, Patricia; Goodman, Patrick; Nascimento Saldiva, Paulo Hilario; Abrutzky, Rosana; Osorio, Samuel; Rao, Shilpa; Fratianni, Simona; Dang, Tran Ngoc; Colistro, Valentina; Huber, Veronika; Lee, Whanhee; Seposo, Xerxes; Honda, Yasushi; Guo, Yue Leon; Bell, Michelle L.; Li, Shanshan
    Background: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. Methods: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5° × 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature–mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature–mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. Findings: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967–5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58–11·07) of all deaths (8·52% [6·19–10·47] were cold-related and 0·91% [0·56–1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60–87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000–03 to 2016–19, the global cold-related excess death ratio changed by −0·51 percentage points (95% eCI −0·61 to −0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13–0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe. Interpretation: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios. Funding: Australian Research Council and the Australian National Health and Medical Research Council. © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
  • Item
    Climate or land use? - Attribution of changes in river flooding in the Sahel zone
    (Basel : MDPI AG, 2015) Aich, V.; Liersch, S.; Vetter, T.; Andersson, J.C.M.; Müller, E.N.; Hattermann, F.F.
  • Item
    Principal nonlinear dynamical modes of climate variability
    (London : Nature Publishing Group, 2015) Mukhin, D.; Gavrilov, A.; Feigin, A.; Loskutov, E.; Kurths, J.
  • Item
    The Likelihood of Recent Record Warmth
    (London : Nature Publishing Group, 2016) Mann, M.E.; Rahmstorf, S.; Steinman, B.A.; Tingley, M.; Miller, S.K.