Search Results

Now showing 1 - 10 of 14
  • Item
    Carbon nanostructures as a multi-functional platform for sensing applications
    (Basel : MDPI AG, 2018) Mendes, R.G.; Wróbel, P.S.; Bachmatiuk, A.; Sun, J.; Gemming, T.; Liu, Z.; Rümmeli, M.H.
    The various forms of carbon nanostructures are providing extraordinary new opportunities that can revolutionize the way gas sensors, electrochemical sensors and biosensors are engineered. The great potential of carbon nanostructures as a sensing platform is exciting due to their unique electrical and chemical properties, highly scalable, biocompatible and particularly interesting due to the almost infinite possibility of functionalization with a wide variety of inorganic nanostructured materials and biomolecules. This opens a whole new pallet of specificity into sensors that can be extremely sensitive, durable and that can be incorporated into the ongoing new generation of wearable technology. Within this context, carbon-based nanostructures are amongst the most promising structures to be incorporated in a multi-functional platform for sensing. The present review discusses the various 1D, 2D and 3D carbon nanostructure forms incorporated into different sensor types as well as the novel functionalization approaches that allow such multi-functionality.
  • Item
    Carbon nanotubes filled with ferromagnetic materials
    (Basel : MDPI, 2010) Weissker, Uhland; Hampel, Silke; Leonhardt, Albrecht; Büchner, Bernd
    Carbon nanotubes (CNT) filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD) methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.
  • Item
    Confined crystals of the smallest phase-change material
    (Washington, DC : American Chemical Society, 2013) Giusca, C.E.; Stolojan, V.; Sloan, J.; Börrnert, F.; Shiozawa, H.; Sader, K.; Rümmeli, M.H.; Büchner, B.; Silva, S.R.P.
    The demand for high-density memory in tandem with limitations imposed by the minimum feature size of current storage devices has created a need for new materials that can store information in smaller volumes than currently possible. Successfully employed in commercial optical data storage products, phase-change materials, that can reversibly and rapidly change from an amorphous phase to a crystalline phase when subject to heating or cooling have been identified for the development of the next generation electronic memories. There are limitations to the miniaturization of these devices due to current synthesis and theoretical considerations that place a lower limit of 2 nm on the minimum bit size, below which the material does not transform in the structural phase. We show here that by using carbon nanotubes of less than 2 nm diameter as templates phase-change nanowires confined to their smallest conceivable scale are obtained. Contrary to previous experimental evidence and theoretical expectations, the nanowires are found to crystallize at this scale and display amorphous-to-crystalline phase changes, fulfilling an important prerequisite of a memory element. We show evidence for the smallest phase-change material, extending thus the size limit to explore phase-change memory devices at extreme scales.
  • Item
    Carbon Nanotubes Hybrid Hydrogels for Environmental Remediation: Evaluation of Adsorption Efficiency under Electric Field
    (Basel : MDPI, 2021) Cirillo, Giuseppe; Curcio, Manuela; Madeo, Lorenzo Francesco; Iemma, Francesca; De Filpo, Giovanni; Hampel, Silke; Nicoletta, Fiore Pasquale
    The performance of Carbon Nanotubes hybrid hydrogels for environmental remediation was investigated using Methylene Blue (MB), Rhodamine B (RD), and Bengal Rose (BR) as model contaminating dyes. An acrylate hydrogel network with incorporated CNT was synthesized by photo-polymerization without any preliminary derivatization of CNT surface. Thermodynamics, isothermal and kinetic studies showed favorable sorption processes with the application of an external 12 V electric field found to be able to influence the amount of adsorbed dyes: stronger interactions with cationic MB molecules (qexp and q12exp of 19.72 and 33.45 mg g−1, respectively) and reduced affinity for anionic RD (qexp and q12exp of 28.93 and 13.06 mg g−1, respectively) and neutral BR (qexp and q12exp of 36.75 and 15.85 mg g−1, respectively) molecules were recorded. The influence of pH variation on dyes adsorption was finally highlighted by reusability studies, with the negligible variation of adsorption capacity after five repeated sorption cycles claiming for the suitability of the proposed systems as effective sorbent for wastewater treatment.
  • Item
    Applications of Carbon Nanotubes in the Internet of Things Era
    (Berlin ; Heidelberg [u.a.] : Springer, 2021) Pang, Jinbo; Bachmatiuk, Alicja; Yang, Feng; Liu, Hong; Zhou, Weijia; Rümmeli, Mark H.; Cuniberti, Gianaurelio
    The post-Moore's era has boosted the progress in carbon nanotube-based transistors. Indeed, the 5G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices. In this perspective, we deliver the readers with the latest trends in carbon nanotube research, including high-frequency transistors, biomedical sensors and actuators, brain-machine interfaces, and flexible logic devices and energy storages. Future opportunities are given for calling on scientists and engineers into the emerging topics.
  • Item
    The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats
    (London : BioMed Central, 2014) Rittinghausen, Susanne; Hackbarth, Anja; Creutzenberg, Otto; Ernst, Heinrich; Heinrich, Uwe; Leonhardt, Albrecht; Schaudien, Dirk
    Background: Biological effects of tailor-made multi-walled carbon nanotubes (MWCNTs) without functionalization were investigated in vivo in a two-year carcinogenicity study. In the past, intraperitoneal carcinogenicity studies in rats using biopersistent granular dusts had always been negative, whereas a number of such studies with different asbestos fibers had shown tumor induction. The aim of this study was to identify possible carcinogenic effects of MWCNTs. We compared induced tumors with asbestos-induced mesotheliomas and evaluated their relevance for humans by immunohistochemical methods. Methods: A total of 500 male Wistar rats (50 per group) were treated once by intraperitoneal injection with 109 or 5 � 109 WHO carbon nanotubes of one of four different MWCNTs suspended in artificial lung medium, which was also used as negative control. Amosite asbestos (108 WHO fibers) served as positive control. Morbid rats were sacrificed and necropsy comprising all organs was performed. Histopathological classification of tumors and, additionally, immunohistochemistry were conducted for podoplanin, pan-cytokeratin, and vimentin to compare induced tumors with malignant mesotheliomas occurring in humans. Results: Treatments induced tumors in all dose groups, but incidences and times to tumor differed between groups. Most tumors were histologically and immunohistochemically classified as malignant mesotheliomas, revealing a predominantly superficial spread on the serosal surface of the abdominal cavity. Furthermore, most tumors showed invasion of peritoneal organs, especially the diaphragm. All tested MWCNT types caused mesotheliomas. We observed highest frequencies and earliest appearances after treatment with the rather straight MWCNT types A and B. In the MWCNT C groups, first appearances of morbid mesothelioma-bearing rats were only slightly later. Later during the two-year study, we found mesotheliomas also in rats treated with MWCNT D - the most curved type of nanotubes. Malignant mesotheliomas induced by intraperitoneal injection of different MWCNTs and of asbestos were histopathologically and immunohistochemically similar, also compared with mesotheliomas in man, suggesting similar pathogenesis. Conclusion: We showed a carcinogenic effect for all tested MWCNTs. Besides aspect ratio, curvature seems to be an important parameter influencing the carcinogenicity of MWCNTs.
  • Item
    Systematic evaluation of oligodeoxynucleotide binding and hybridization to modified multi-walled carbon nanotubes
    (London : Biomed Central, 2017) Kaufmann, Anika; Hampel, Silke; Rieger, Christiane; Kunhardt, David; Schendel, Darja; Füssel, Susanne; Schwenzer, Bernd; Erdmann, Kati
    Background: In addition to conventional chemotherapeutics, nucleic acid-based therapeutics like antisense oligodeoxynucleotides (AS-ODN) represent a novel approach for the treatment of bladder cancer (BCa). An efficient delivery of AS-ODN to the urothelium and then into cancer cells might be achieved by the local application of multi-walled carbon nanotubes (MWCNT). In the present study, pristine MWCNT and MWCNT functionalized with hydrophilic moieties were synthesized and then investigated regarding their physicochemical characteristics, dispersibility, biocompatibility, cellular uptake and mucoadhesive properties. Finally, their binding capacity for AS-ODN via hybridization to carrier strand oligodeoxynucleotides (CS-ODN), which were either non-covalently adsorbed or covalently bound to the different MWCNT types, was evaluated. Results: Pristine MWCNT were successfully functionalized with hydrophilic moieties (MWCNT-OH, -COOH, -NH2, -SH), which led to an improved dispersibility and an enhanced dispersion stability. A viability assay revealed that MWCNT-OH, MWCNT-NH2 and MWCNT-SH were most biocompatible. All MWCNT were internalized by BCa cells, whereupon the highest uptake was observed for MWCNT-OH with 40% of the cells showing an engulfment. Furthermore, all types of MWCNT could adhere to the urothelium of explanted mouse bladders, but the amount of the covered urothelial area was with 2-7% rather low. As indicated by fluorescence measurements, it was possible to attach CS-ODN by adsorption and covalent binding to functionalized MWCNT. Adsorption of CS-ODN to pristine MWCNT, MWCNT-COOH and MWCNT-NH2 as well as covalent coupling to MWCNT-NH2 and MWCNT-SH resulted in the best binding capacity and stability. Subsequently, therapeutic AS-ODN could be hybridized to and reversibly released from the CS-ODN coupled via both strategies to the functionalized MWCNT. The release of AS-ODN at experimental conditions (80 °C, buffer) was most effective from CS-ODN adsorbed to MWCNT-OH and MWCNT-NH2 as well as from CS-ODN covalently attached to MWCNT-COOH, MWCNT-NH2 and MWCNT-SH. Furthermore, we could exemplarily demonstrate that AS-ODN could be released following hybridization to CS-ODN adsorbed to MWCNT-OH at physiological settings (37 °C, urine). Conclusions: In conclusion, functionalized MWCNT might be used as nanotransporters in antisense therapy for the local treatment of BCa.
  • Item
    Fe1-xNix alloy nanoparticles encapsulated inside carbon nanotubes: Controlled synthesis, structure and magnetic properties
    (Basel : MDPI AG, 2018) Ghunaim, R.; Damm, C.; Wolf, D.; Lubk, A.; Büchner, B.; Mertig, M.; Hampel, S.
    In the present work, different synthesis procedures have been demonstrated to fill carbon nanotubes (CNTs) with Fe1-xNix alloy nanoparticles (x = 0.33, 0.5). CNTs act as templates for the encapsulation of magnetic nanoparticles, and provide a protective shield against oxidation as well as prevent nanoparticles agglomeration. By variation of the reaction parameters, the purity of the samples, degree of filling, the composition and size of filling nanoparticles have been tailored and therefore the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Bright-field (BF) TEM tomography, X-ray powder diffraction, superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe1-x Nix-filled CNTs show a huge enhancement in the coercive fields compared to the corresponding bulk materials, which make them excellent candidates for several applications such as magnetic storage devices.
  • Item
    Magnetic field effects of double-walled carbon nanotubes
    (São Carlos : Universidade Federal de São Carlos, 2006) Latgé, A.; Grimm, D.; Ferreira, M.S.
    A theoretical discussion of electronic and transport properties of a particular family of double-wall carbon nanotubes, named commensurate structures of the armchair type (n,n)@(2n,2n) is addressed. A single p-band tight binding hamiltonian is considered and the magnetic field is theoretically described by following the Peierls approximation into the hopping energies. Our emphasis is put on investigating the main effects of the geometrical aspects and relative positions of the tubes on the local density of states and on the conductance of the system. By considering intershell interactions between a set of neighboring atoms on the walls of the inner and outer tubes, we study the possibility of founding Aharonov-Bohm effects in the DWCNs when a magnetic field is applied along the axial direction.
  • Item
    Single-crystalline FeCo nanoparticle-filled carbon nanotubes: Synthesis, structural characterization and magnetic properties
    (Frankfurt am Main : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018) Ghunaim, R.; Scholz, M.; Damm, C.; Rellinghaus, B.; Klingeler, R.; Büchner, B.; Mertig, M.; Hampel, S.
    In the present work, we demonstrate different synthesis procedures for filling carbon nanotubes (CNTs) with equimolar binary nanoparticles of the type Fe-Co. The CNTs act as templates for the encapsulation of magnetic nanoparticles and provide a protective shield against oxidation as well as prevent nanoparticle agglomeration. By variation of the reaction parameters, we were able to tailor the sample purity, degree of filling, the composition and size of the filling particles, and therefore, the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe-Co-filled CNTs show significant enhancement in the coercive field as compared to the corresponding bulk material, which make them excellent candidates for several applications such as magnetic storage devices.