Search Results

Now showing 1 - 10 of 34
  • Item
    Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability
    (Amsterdam : Elsevier, 2017) Hempel, Sabrina; König, Marcel; Menz, Christoph; Janke, David; Amon, Barbara; Banhazi, Thomas M.; Estellés, Fernando; Amon, Thomas
    The microclimatic conditions in dairy buildings affect animal welfare and gaseous emissions. Measurements are highly variable due to the inhomogeneous distribution of heat and humidity sources (related to farm management) and the turbulent inflow (associated with meteorologic boundary conditions). The selection of the measurement strategy (number and position of the sensors) and the analysis methodology adds to the uncertainty of the applied measurement technique. To assess the suitability of different sensor positions, in situations where monitoring in the direct vicinity of the animals is not possible, we collected long-term data in two naturally ventilated dairy barns in Germany between March 2015 and April 2016 (horizontal and vertical profiles with 10 to 5 min temporal resolution). Uncertainties related to the measurement setup were assessed by comparing the device outputs under lab conditions after the on-farm experiments. We found out that the uncertainty in measurements of relative humidity is of particular importance when assessing heat stress risk and resulting economic losses in terms of temperature-humidity index. Measurements at a height of approximately 3 m–3.5 m turned out to be a good approximation for the microclimatic conditions in the animal occupied zone (including the air volume close to the emission active zone). However, further investigation along this cross-section is required to reduce uncertainties related to the inhomogeneous distribution of humidity. In addition, a regular sound cleaning (and if possible recalibration after few months) of the measurement devices is crucial to reduce the instrumentation uncertainty in long-term monitoring of relative humidity in dairy barns. © 2017 The Authors
  • Item
    Improving the use of crop models for risk assessment and climate change adaptation
    (Amsterdam : Elsevier, 2017) Challinor, Andrew J.; Müller, Christoph; Asseng, Senthold; Deva, Chetan; Nicklin, Kathryn Jane; Wallach, Daniel; Vanuytrecht, Eline; Whitfield, Stephen; Ramirez-Villegas, Julian; Koehler, Ann-Kristin
    Crop models are used for an increasingly broad range of applications, with a commensurate proliferation of methods. Careful framing of research questions and development of targeted and appropriate methods are therefore increasingly important. In conjunction with the other authors in this special issue, we have developed a set of criteria for use of crop models in assessments of impacts, adaptation and risk. Our analysis drew on the other papers in this special issue, and on our experience in the UK Climate Change Risk Assessment 2017 and the MACSUR, AgMIP and ISIMIP projects. The criteria were used to assess how improvements could be made to the framing of climate change risks, and to outline the good practice and new developments that are needed to improve risk assessment. Key areas of good practice include: i. the development, running and documentation of crop models, with attention given to issues of spatial scale and complexity; ii. the methods used to form crop-climate ensembles, which can be based on model skill and/or spread; iii. the methods used to assess adaptation, which need broadening to account for technological development and to reflect the full range options available. The analysis highlights the limitations of focussing only on projections of future impacts and adaptation options using pre-determined time slices. Whilst this long-standing approach may remain an essential component of risk assessments, we identify three further key components: 1. Working with stakeholders to identify the timing of risks. What are the key vulnerabilities of food systems and what does crop-climate modelling tell us about when those systems are at risk? 2. Use of multiple methods that critically assess the use of climate model output and avoid any presumption that analyses should begin and end with gridded output. 3. Increasing transparency and inter-comparability in risk assessments. Whilst studies frequently produce ranges that quantify uncertainty, the assumptions underlying these ranges are not always clear. We suggest that the contingency of results upon assumptions is made explicit via a common uncertainty reporting format; and/or that studies are assessed against a set of criteria, such as those presented in this paper.
  • Item
    Planetary geostrophic equations for the atmosphere with evolution of the barotropic flow
    (Amsterdam : Elsevier, 2009) Dolaptchiev, S.I.; Klein, R.
    Atmospheric phenomena such as the quasi-stationary Rossby waves, teleconnection patterns, ultralong persistent blockings and the polar/subtropical jet are characterized by planetary spatial scales, i.e. scales of the order of the earth's radius. This motivates our interest in the relevant physical processes acting on the planetary scales. Using an asymptotic approach, we systematically derive reduced model equations valid for atmospheric motions with planetary spatial scales and a temporal scale of the order of about 1 week. We assume variations of the background potential temperature comparable in magnitude with those adopted in the classical quasi-geostrophic theory. At leading order, the resulting equations include the planetary geostrophic balance. In order to apply these equations to the atmosphere, one has to prescribe a closure for the vertically averaged pressure. We present an evolution equation for this component of the pressure which was derived in a systematic way from the asymptotic analysis. Relative to the prognostic closures adopted in existing reduced-complexity planetary models, this new dynamical closure may provide for more realistic increased large-scale, long-time variability in future implementations. © 2008 Elsevier B.V. All rights reserved.
  • Item
    Challenges and opportunities in mapping land use intensity globally
    (Amsterdam : Elsevier, 2013) Kuemmerle, Tobias; Erb, Karlheinz; Meyfroidt, Patrick; Müller, Daniel; Verburg, Peter H.; Estel, Stephan; Haberl, Helmut; Hostert, Patrick; Jepsen, Martin R.; Kastner, Thomas; Levers, Christian; Lindner, Marcus; Plutzar, Christoph; Verkerk, Pieter Johannes; van der Zanden, Emma H.; Reenberg, Anette
    Future increases in land-based production will need to focus more on sustainably intensifying existing production systems. Unfortunately, our understanding of the global patterns of land use intensity is weak, partly because land use intensity is a complex, multidimensional term, and partly because we lack appropriate datasets to assess land use intensity across broad geographic extents. Here, we review the state of the art regarding approaches for mapping land use intensity and provide a comprehensive overview of available global-scale datasets on land use intensity. We also outline major challenges and opportunities for mapping land use intensity for cropland, grazing, and forestry systems, and identify key issues for future research.
  • Item
    A conceptual framework for analysing and measuring land-use intensity
    (Amsterdam : Elsevier, 2013) Erb, Karl-Heinz; Haberl, Helmut; Jepsen, Martin Rudbeck; Kuemmerle, Tobias; Lindner, Marcus; Müller, Daniel; Verburg, Peter H.; Reenberg, Anette
    Large knowledge gaps currently exist that limit our ability to understand and characterise dynamics and patterns of land-use intensity: in particular, a comprehensive conceptual framework and a system of measurement are lacking. This situation hampers the development of a sound understanding of the mechanisms, determinants, and constraints underlying changes in land-use intensity. On the basis of a review of approaches for studying land-use intensity, we propose a conceptual framework to quantify and analyse land-use intensity. This framework integrates three dimensions: (a) input intensity, (b) output intensity, and (c) the associated system-level impacts of land- based production (e.g. changes in carbon storage or biodiversity). The systematic development of indicators across these dimensions would provide opportunities for the systematic analyses of the trade-offs, synergies and opportunity costs of land-use intensification strategies.
  • Item
    The global technical potential of bio-energy in 2050 considering sustainability constraints
    (Amsterdam : Elsevier, 2010) Haberl, H.; Beringer, T.; Bhattacharya, S.C.; Erb, K.-H.; Hoogwijk, M.
    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets ('technical potential'). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160-270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization ('cascade utilization') of biomass flows. © 2010 Elsevier B.V.
  • Item
    Understanding of water resilience in the Anthropocene
    (Amsterdam : Elsevier, 2019) Falkenmark, Malin; Wang-Erlandsson, Lan; Rockström, Johan
    Water is indispensable for Earth resilience and sustainable development. The capacity of social-ecological systems to deal with shocks, adapting to changing conditions and transforming in situations of crisis are fundamentally dependent on the functions of water to e.g., regulate the Earth's climate, support biomass production, and supply water resources for human societies. However, massive, inter-connected, human interference involving climate forcing, water withdrawal, dam constructions, and land-use change have significantly disturbed these water functions and induced regime shifts in social-ecological systems. In many cases, changes in core water functions have pushed systems beyond tipping points and led to fundamental shifts in system feedback. Examples of such transgressions, where water has played a critical role, are collapse of aquatic systems beyond water quality and quantity thresholds, desertification due to soil and ecosystem degradation, and tropical forest dieback associated with self-amplifying moisture and carbon feedbacks. Here, we aggregate the volumes and flows of water involved in water functions globally, and review the evidence of freshwater related linear collapse and non-linear tipping points in ecological and social systems through the lens of resilience theory. Based on the literature review, we synthesize the role of water in mediating different types of ecosystem regime shifts, and generalize the process by which life support systems are at risk of collapsing due to loss of water functions. We conclude that water plays a fundamental role in providing social-ecological resilience, and suggest that further research is needed to understand how the erosion of water resilience at local and regional scale may potentially interact, cascade, or amplify through the complex, globally hyper-connected networks of the Anthropocene. © 2018 The Authors
  • Item
    Optimal carbon taxation and horizontal equity: A welfare-theoretic approach with application to German household data
    (Amsterdam : Elsevier, 2022) Hänsel, Martin C.; Franks, Max; Kalkuhl, Matthias; Edenhofer, Ottmar
    We develop a model of optimal taxation and redistribution under an ambitious climate target. We take into account vertical income differences, but also explicitly capture horizontal equity concerns by considering heterogeneous energy efficiencies. By deriving first- and second-best rules for policy instruments including carbon and labor taxes, transfers and energy subsidies, we investigate analytically how vertical and horizontal inequality is considered in the welfare maximizing tax structure. We calibrate the model to German household data and a 30 percent emission reduction goal and show that redistribution of carbon tax revenues via household-specific transfers is the first-best policy. Under plausible assumptions on inequality aversion, transfers to energy-intensive households should be about five times higher than transfers to energy-efficient households. Equal per-capita transfers do not require to observe households’ efficiency type, but increase equity-weighted mitigation costs by around 5 percent compared to the first-best. Mitigation costs increase by less, if the government can implement a uniform clean energy subsidy or household-specific tax-subsidy schemes on energy consumption and labor income that target heterogeneous energy efficiencies. Horizontal equity concerns may therefore constitute a new second-best rationale for clean energy policies or differentiated energy taxes.
  • Item
    Corona crisis fuels racially profiled hate in social media networks
    (Amsterdam : Elsevier, 2020) Stechemesser, Annika; Wenz, Leonie; Levermann, Anders
    [No abstract available]
  • Item
    Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century
    (Amsterdam : Elsevier, 2016) Kriegler, Elmar; Bauer, Nico; Popp, Alexander; Humpenöder, Florian; Leimbach, Marian; Strefler, Jessica; Baumstark, Lavinia; Bodirsky, Benjamin Leon; Hilaire, Jérôme; Klein, David; Mouratiadou, Ioanna; Weindl, Isabelle; Bertram, Christoph; Dietrich, Jan-Philipp; Luderer, Gunnar; Pehl, Michaja; Pietzcker, Robert; Piontek, Franziska; Lotze-Campen, Hermann; Biewald, Anne; Bonsch, Markus; Giannousakis, Anastasis; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Schultes, Anselm; Schwanitz, Jana; Stevanovic, Miodrag; Calvin, Katherine; Emmerling, Johannes; Fujimori, Shinichiro; Edenhofer, Ottmar
    This paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.