Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006–2009

2011, Heintzenberg, J., Birmili, W., Otto, R., Andreae, M.O., Mayer, J.-C., Chi, X., Panov, A.

This paper analyses aerosol particle number size distributions, particulate absorption at 570 nm wavelength and carbon monoxide (CO) measured between September 2006 and January 2010 at heights of 50 and 300 m at the Zotino Tall Tower Facility (ZOTTO) in Siberia (60.8° N; 89.35° E). Average number, surface and volume concentrations are broadly comparable to former studies covering shorter observation periods. Fits of multiple lognormal distributions yielded three maxima in probability distribution of geometric mean diameters in the Aitken and accumulation size range and a possible secondary maximum in the nucleation size range below 25 nm. The seasonal cycle of particulate absorption shows maximum concentrations in high winter (December) and minimum concentrations in mid-summer (July). The 90th percentile, however, indicates a secondary maximum in July/August that is likely related to forest fires. The strongly combustion derived CO shows a single winter maximum and a late summer minimum, albeit with a considerably smaller seasonal swing than the particle data due to its longer atmospheric lifetime. Total volume and even more so total number show a more complex seasonal variation with maxima in winter, spring, and summer. A cluster analysis of back trajectories and vertical profiles of the pseudo-potential temperature yielded ten clusters with three levels of particle number concentration: Low concentrations in Arctic air masses (400–500 cm−3), mid-level concentrations for zonally advected air masses from westerly directions between 55° and 65° N (600–800 cm−3), and high concentrations for air masses advected from the belt of industrial and population centers in Siberia and Kazakhstan (1200 cm−3). The observational data is representative for large parts of the troposphere over Siberia and might be particularly useful for the validation of global aerosol transport models.

Loading...
Thumbnail Image
Item

Variability in the mass absorption cross section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter

2021, Yuan, Jinfeng, Modini, Robin Lewis, Zanatta, Marco, Herber, Andreas B., Müller, Thomas, Wehner, Birgit, Poulain, Laurent, Tuch, Thomas, Baltensperger, Urs, Gysel-Beer, Martin

Properties of atmospheric black carbon (BC) particles were characterized during a field experiment at a rural background site (Melpitz, Germany) in February 2017. BC absorption at a wavelength of 870 nm was measured by a photoacoustic extinctiometer, and BC physical properties (BC mass concentration, core size distribution and coating thickness) were measured by a single-particle soot photometer (SP2). Additionally, a catalytic stripper was used to intermittently remove BC coatings by alternating between ambient and thermo-denuded conditions. From these data the mass absorption cross section of BC (MACBC) and its enhancement factor (EMAC) were inferred for essentially waterfree aerosol as present after drying to low relative humidity (RH). Two methods were applied independently to investigate the coating effect on EMAC: A correlation method (MACBC; ambient vs. BC coating thickness) and a denuding method (MACBC; ambient vs. MACBC; denuded). Observed EMAC values varied from 1.0 to 1.6 (lower limit from denuding method) or 1:2 to 1.9 (higher limit from correlation method), with the mean coating volume fraction ranging from 54% to 78% in the dominating mass equivalent BC core diameter range of 200?220 nm.MACBC and EMAC were strongly correlated with coating thickness of BC. By contrast, other potential drivers of EMAC variability, such as different BC sources (air mass origin and absorption Angström exponent), coating composition (ratio of inorganics to organics) and BC core size distribution, had only minor effects. These results for ambient BC measured at Melpitz during winter show that the lensing effect caused by coatings on BC is the main driver of the variations in MACBC and EMAC, while changes in other BC particle properties such as source, BC core size or coating composition play only minor roles at this rural background site with a large fraction of aged particles. Indirect evidence suggests that potential dampening of the lensing effect due to unfavorable morphology was most likely small or even negligible.