Search Results

Now showing 1 - 10 of 16
  • Item
    Comparing a global high-resolution downscaled fossil fuel CO2 emission dataset to local inventory-based estimates over 14 global cities
    (London : Biomed Central, 2020) Chen, Jingwen; Zhao, Fang; Zeng, Ning; Oda, Tomohiro
    Background: Compilation of emission inventories (EIs) for cities is a whole new challenge to assess the subnational climate mitigation effort under the Paris Climate Agreement. Some cities have started compiling EIs, often following a global community protocol. However, EIs are often difficult to systematically examine because of the ways they were compiled (data collection and emission calculation) and reported (sector definition and direct vs consumption). In addition, such EI estimates are not readily applicable to objective evaluation using modeling and observations due to the lack of spatial emission extents. City emission estimates used in the science community are often based on downscaled gridded EIs, while the accuracy of the downscaled emissions at city level is not fully assessed. Results: This study attempts to assess the utility of the downscaled emissions at city level. We collected EIs from 14 major global cities and compare them to the estimates from a global high-resolution fossil fuel CO2 emission data product (ODIAC) commonly used in the science research community. We made necessary adjustments to the estimates to make our comparison as reasonable as possible. We found that the two methods produce very close area-wide emission estimates for Shanghai and Delhi (< 10% difference), and reach good consistency in half of the cities examined (< 30% difference). The ODIAC dataset exhibits a much higher emission compared to inventory estimates in Cape Town (+ 148%), Sao Paulo (+ 43%) and Beijing (+ 40%), possibly related to poor correlation between nightlight intensity with human activity, such as the high-emission and low-lighting industrial parks in developing countries. On the other hand, ODIAC shows lower estimates in Manhattan (-62%), New York City (-45%), Washington D.C. (-42%) and Toronto (-33%), all located in North America, which may be attributable to an underestimation of residential emissions from heating in ODIAC's nightlight-based approach, and an overestimation of emission from ground transportation in registered vehicles statistics of inventory estimates. Conclusions: The relatively good agreement suggests that the ODIAC data product could potentially be used as a first source for prior estimate of city-level CO2 emission, which is valuable for atmosphere CO2 inversion modeling and comparing with satellite CO2 observations. Our compilation of in-boundary emission estimates for 14 cities contributes towards establishing an accurate inventory in-boundary global city carbon emission dataset, necessary for accountable local climate mitigation policies in the future. © 2020 The Author(s).
  • Item
    Modelling carbon dynamics from urban land conversion: Fundamental model of city in relation to a local carbon cycle
    (London : Biomed Central, 2006) Svirejeva-Hopkins, A.; Schellnhuber, H.-J.
    Background: The main task is to estimate the qualitative and quantitative contribution of urban territories and precisely of the process of urbanization to the Global Carbon Cycle (GCC). Note that, on the contrary to many investigations that have considered direct anthropogenic emission of CO2(urbanized territories produce ca. 96-98% of it), we are interested in more subtle, and up until the present time, weaker processes associated with the conversion of the surrounding natural ecosystems and landscapes into urban lands. Such conversion inevitably takes place when cities are sprawling and additional "natural" lands are becoming "urbanized". Results: In order to fulfil this task, we first develop a fundamental model of urban space, since the type of land cover within a city makes a difference for a local carbon cycle. Hence, a city is sub-divided by built-up, "green"(parks, etc.) and informal settlements (favelas) fractions. Another aspect is a sub-division of the additional two regions, which makes the total number reaching eight regions, while the UN divides the world by six. Next, the basic model of the local carbon cycle for urbanized territories is built. We consider two processes: carbon emissions as a result of conversion of natural lands caused by urbanization; and the transformation of carbon flows by "urbanized" ecosystems; when carbon, accumulated by urban vegetation, is exported to the neighbouring territories. The total carbon flow in the model depends, in general, on two groups of parameters. The first includes the NPP, and the sum of living biomass and dead organic matter of ecosystems involved in the process of urbanization, and namely them we calculate here, using a new more realistic approach and taking into account the difference in regional cities' evolution. Conclusion: There is also another group of parameters, dealing with the areas of urban territories, and their annual increments. A method of dynamic forecasting of these parameters, based on the statistical regression model, was already suggested; nevertheless we shall further develop a new technique based on one idea to use the gamma-distribution. This will allow us to calculate the total carbon balance and to show how urbanization shifts it. © 2006 Svirejeva-Hopkins and Schellnhuber; licensee BioMed Central Ltd.
  • Item
    Improvement of the optical properties after surface error correction of aluminium mirror surfaces
    (London : Biomed Central, 2021) Ulitschka, M.; Bauer, J.; Frost, F.; Arnold, T.
    Ion beam finishing techniques of aluminium mirrors have a high potential to meet the increasing demands on applications of high-performance mirror devices for visible and ultraviolet spectral range. Reactively driven ion beam machining using oxygen and nitrogen gases enables the direct figure error correction up to 1 μm machining depth while preserving the initial roughness. However, the periodic turning mark structures, which result from preliminary device shaping by single-point diamond turning, often limit the applicability of mirror surfaces in the short-periodic spectral range. Ion beam planarization with the aid of a sacrificial layer is a promising process route for surface smoothing, resulting in successfully reduction of the turning mark structures. A combination with direct surface smoothing to perform a subsequent improvement of the microroughness is presented with a special focus on roughness evolution, chemical composition, and optical surface properties. As a result, an ion beam based process route is suggested, which allows almost to recover the reflective properties and an increased long-term stability of smoothed aluminium surfaces.
  • Item
    Design and performance analysis of integrated focusing grating couplers for the transverse-magnetic TM00 mode in a photonic BiCMOS technology
    (London : Biomed Central, 2020) Georgieva, Galina; Voigt, Karsten; Peczek, Anna; Mai, Christian; Zimmermann, Lars
    Focusing grating couplers for the excitation of the fundamental transverse-magnetic (TM) mode in integrated silicon photonic waveguides are designed and characterized under the boundary conditions of a photonic BiCMOS foundry. Two types of waveguide geometries are considered – a nanowire and a rib waveguide. Wafer-scale experimental results for nanowire TM grating couplers are in excellent agreement with numerical investigations and demonstrate a robust behavior on the wafer. The mean coupling loss and the 3s interval are -3.9 ± 0.3 dB. The on wafer variation is three times lower than for the fundamental transverse-electric (TE) polarization. Similarly, the coupling in rib waveguides is examined as well. The results indicate that the rib waveguides require a modified geometry when designed for TM. In general, the nanowire waveguide type is more suitable for TM coupling, showing a stable and repeatable performance. © 2020, The Author(s).
  • Item
    Effects of dendritic core-shell glycoarchitectures on primary mesenchymal stem cells and osteoblasts obtained from different human donors
    (London : Biomed Central, 2015) Lautenschläger, Stefan; Striegler, Christin; Dakischew, Olga; Schütz, Iris; Szalay, Gabor; Schnettler, Reinhard; Heiß, Christian; Appelhans, Dietmar; Lips, Katrin S.
    The biological impact of novel nano-scaled drug delivery vehicles in highly topical therapies of bone diseases have to be investigated in vitro before starting in vivo trials. Highly desired features for these materials are a good cellular uptake, large transport capacity for drugs and a good bio-compatibility. Essentially the latter has to be addressed as first point on the agenda. We present a study on the biological interaction of maltose-modified poly(ethyleneimine) (PEI-Mal) on primary human mesenchymal stem cell, harvested from reaming debris (rdMSC) and osteoblasts obtained from four different male donors. PEI-Mal-nanoparticles with two different molecular weights of the PEI core (5000 g/mol for PEI-5k-Mal-B and 25,000 g/mol for PEI-25k-Mal-B) have been administered to both cell lines. As well dose as incubation-time dependent effects and interactions have been researched for concentrations between 1 μg/ml to 1 mg/ml and periods of 24 h up to 28 days. Studies conducted by different methods of microscopy as light microscopy, fluorescence microscopy, transmission-electron-microscopy and quantitative assays (LDH and DC-protein) indicate as well a good cellular uptake of the nanoparticles as a particle- and concentration-dependent impact on the cellular macro- and micro-structure of the rdMSC samples. In all experiments PEI-5k-Mal-B exhibits a superior biocompatibility compared to PEI-25k-Mal-B. At higher concentrations PEI-25k-Mal-B is toxic and induces a directly observable mitochondrial damage. The alkaline phosphatase assay (ALP), has been conducted to check on the possible influence of nanoparticles on the differentiation capabilities of rdMSC to osteoblasts. In addition the production of mineralized matrix has been shown by von-Kossa stained samples. No influence of the nanoparticles on the ALP per cell has been detected. Additionally, for all experiments, results are strongly influenced by a large donor-to-donor variability of the four different rdMSC samples. To summarize, while featuring a good cellular uptake, PEI-5k-Mal-B induces only minimal adverse effects and features clearly superior biocompatibility compared to the larger PEI-25k-Mal-B.
  • Item
    Quantification of silver nanoparticle uptake and distribution within individual human macrophages by FIB/SEM slice and view
    (London : Biomed Central, 2017-3-21) Guehrs, Erik; Schneider, Michael; Günther, Christian M.; Hessing, Piet; Heitz, Karen; Wittke, Doreen; López-Serrano Oliver, Ana; Jakubowski, Norbert; Plendl, Johanna; Eisebitt, Stefan; Haase, Andrea
    Background: Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. Results: We quantified cellular uptake of 75 nm diameter citrate stabilized silver NPs (Ag 75 Cit) into an individual human macrophage derived from monocytic THP-1 cells using a FIB/SEM slice and view approach. Cells were treated with 10 μg/ml for 24 h. We investigated a single cell and found in total 3138 ± 722 silver NPs inside this cell. Most of the silver NPs were located in large agglomerates, only a few were found in clusters of fewer than five NPs. Furthermore, we cross-checked our results by using inductively coupled plasma mass spectrometry and could confirm the FIB/SEM results. Conclusions: Our approach based on FIB/SEM slice and view is currently the only one that allows the quantification of the absolute dose of silver NPs in individual cells and at the same time to assess their intracellular distribution at high resolution. We therefore propose to use FIB/SEM slice and view to systematically analyse the cellular uptake of various NPs as a function of size, concentration and incubation time.
  • Item
    Electroactive nanoinjection platform for intracellular delivery and gene silencing
    (London : Biomed Central, 2023) Shokouhi, Ali-Reza; Chen, Yaping; Yoh, Hao Zhe; Murayama, Takahide; Suu, Koukou; Morikawa, Yasuhiro; Brenker, Jason; Alan, Tuncay; Voelcker, Nicolas H.; Elnathan, Roey
    Background: Nanoinjection—the process of intracellular delivery using vertically configured nanostructures—is a physical route that efficiently negotiates the plasma membrane, with minimal perturbation and toxicity to the cells. Nanoinjection, as a physical membrane-disruption-mediated approach, overcomes challenges associated with conventional carrier-mediated approaches such as safety issues (with viral carriers), genotoxicity, limited packaging capacity, low levels of endosomal escape, and poor versatility for cell and cargo types. Yet, despite the implementation of nanoinjection tools and their assisted analogues in diverse cellular manipulations, there are still substantial challenges in harnessing these platforms to gain access into cell interiors with much greater precision without damaging the cell’s intricate structure. Here, we propose a non-viral, low-voltage, and reusable electroactive nanoinjection (ENI) platform based on vertically configured conductive nanotubes (NTs) that allows for rapid influx of targeted biomolecular cargos into the intracellular environment, and for successful gene silencing. The localization of electric fields at the tight interface between conductive NTs and the cell membrane drastically lowers the voltage required for cargo delivery into the cells, from kilovolts (for bulk electroporation) to only ≤ 10 V; this enhances the fine control over membrane disruption and mitigates the problem of high cell mortality experienced by conventional electroporation. Results: Through both theoretical simulations and experiments, we demonstrate the capability of the ENI platform to locally perforate GPE-86 mouse fibroblast cells and efficiently inject a diverse range of membrane-impermeable biomolecules with efficacy of 62.5% (antibody), 55.5% (mRNA), and 51.8% (plasmid DNA), with minimal impact on cells’ viability post nanoscale-EP (> 90%). We also show gene silencing through the delivery of siRNA that targets TRIOBP, yielding gene knockdown efficiency of 41.3%. Conclusions: We anticipate that our non-viral and low-voltage ENI platform is set to offer a new safe path to intracellular delivery with broader selection of cargo and cell types, and will open opportunities for advanced ex vivo cell engineering and gene silencing. Graphical abstract: [Figure not available: see fulltext.]
  • Item
    Optically transparent vertical silicon nanowire arrays for live-cell imaging
    (London : Biomed Central, 2021) Elnathan, Roey; Holle, Andrew W.; Young, Jennifer; George, Marina; Heifler, Omri; Goychuk, Andriy; Frey, Erwin; Kemkemer, Ralf; Spatz, Joachim P.; Kosloff, Alon; Patolsky, Fernando; Voelcker, Nicolas H.
    Programmable nano-bio interfaces driven by tuneable vertically configured nanostructures have recently emerged as a powerful tool for cellular manipulations and interrogations. Such interfaces have strong potential for ground-break-ing advances, particularly in cellular nanobiotechnology and mechanobiology. However, the opaque nature of many nanostructured surfaces makes non-destructive, live-cell characterization of cellular behavior on vertically aligned nanostructures challenging to observe. Here, a new nanofabrication route is proposed that enables harvesting of vertically aligned silicon (Si) nanowires and their subsequent transfer onto an optically transparent substrate, with high efficiency and without artefacts. We demonstrate the potential of this route for efficient live-cell phase contrast imaging and subsequent characterization of cells growing on vertically aligned Si nanowires. This approach provides the first opportunity to understand dynamic cellular responses to a cell-nanowire interface, and thus has the potential to inform the design of future nanoscale cellular manipulation technologies.
  • Item
    Effectiveness of porous silicon nanoparticle treatment at inhibiting the migration of a heterogeneous glioma cell population
    (London : Biomed Central, 2021) Abdalla, Youssef; Luo, Meihua; Mäkilä, Ermei; Day, Bryan W.; Voelcker, Nicolas H.; Tong, Yin
    BACKGROUND: Approximately 80% of brain tumours are gliomas. Despite treatment, patient mortality remains high due to local metastasis and relapse. It has been shown that transferrin-functionalised porous silicon nanoparticles (Tf@pSiNPs) can inhibit the migration of U87 glioma cells. However, the underlying mechanisms and the effect of glioma cell heterogeneity, which is a hallmark of the disease, on the efficacy of Tf@pSiNPs remains to be addressed. RESULTS: Here, we observed that Tf@pSiNPs inhibited heterogeneous patient-derived glioma cells’ (WK1) migration across small perforations (3 μm) by approximately 30%. A phenotypical characterisation of the migrated subpopulations revealed that the majority of them were nestin and fibroblast growth factor receptor 1 positive, an indication of their cancer stem cell origin. The treatment did not inhibit cell migration across large perforations (8 μm), nor cytoskeleton formation. This is in agreement with our previous observations that cellular-volume regulation is a mediator of Tf@pSiNPs’ cell migration inhibition. Since aquaporin 9 (AQP9) is closely linked to cellular-volume regulation, and is highly expressed in glioma, the effect of AQP9 expression on WK1 migration was investigated. We showed that WK1 migration is correlated to the differential expression patterns of AQP9. However, AQP9-silencing did not affect WK1 cell migration across perforations, nor the efficacy of cell migration inhibition mediated by Tf@pSiNPs, suggesting that AQP9 is not a mediator of the inhibition. CONCLUSION: This in vitro investigation highlights the unique therapeutic potentials of Tf@pSiNPs against glioma cell migration and indicates further optimisations that are required to maximise its therapeutic efficacies.
  • Item
    Systematic evaluation of oligodeoxynucleotide binding and hybridization to modified multi-walled carbon nanotubes
    (London : Biomed Central, 2017) Kaufmann, Anika; Hampel, Silke; Rieger, Christiane; Kunhardt, David; Schendel, Darja; Füssel, Susanne; Schwenzer, Bernd; Erdmann, Kati
    Background: In addition to conventional chemotherapeutics, nucleic acid-based therapeutics like antisense oligodeoxynucleotides (AS-ODN) represent a novel approach for the treatment of bladder cancer (BCa). An efficient delivery of AS-ODN to the urothelium and then into cancer cells might be achieved by the local application of multi-walled carbon nanotubes (MWCNT). In the present study, pristine MWCNT and MWCNT functionalized with hydrophilic moieties were synthesized and then investigated regarding their physicochemical characteristics, dispersibility, biocompatibility, cellular uptake and mucoadhesive properties. Finally, their binding capacity for AS-ODN via hybridization to carrier strand oligodeoxynucleotides (CS-ODN), which were either non-covalently adsorbed or covalently bound to the different MWCNT types, was evaluated. Results: Pristine MWCNT were successfully functionalized with hydrophilic moieties (MWCNT-OH, -COOH, -NH2, -SH), which led to an improved dispersibility and an enhanced dispersion stability. A viability assay revealed that MWCNT-OH, MWCNT-NH2 and MWCNT-SH were most biocompatible. All MWCNT were internalized by BCa cells, whereupon the highest uptake was observed for MWCNT-OH with 40% of the cells showing an engulfment. Furthermore, all types of MWCNT could adhere to the urothelium of explanted mouse bladders, but the amount of the covered urothelial area was with 2-7% rather low. As indicated by fluorescence measurements, it was possible to attach CS-ODN by adsorption and covalent binding to functionalized MWCNT. Adsorption of CS-ODN to pristine MWCNT, MWCNT-COOH and MWCNT-NH2 as well as covalent coupling to MWCNT-NH2 and MWCNT-SH resulted in the best binding capacity and stability. Subsequently, therapeutic AS-ODN could be hybridized to and reversibly released from the CS-ODN coupled via both strategies to the functionalized MWCNT. The release of AS-ODN at experimental conditions (80 °C, buffer) was most effective from CS-ODN adsorbed to MWCNT-OH and MWCNT-NH2 as well as from CS-ODN covalently attached to MWCNT-COOH, MWCNT-NH2 and MWCNT-SH. Furthermore, we could exemplarily demonstrate that AS-ODN could be released following hybridization to CS-ODN adsorbed to MWCNT-OH at physiological settings (37 °C, urine). Conclusions: In conclusion, functionalized MWCNT might be used as nanotransporters in antisense therapy for the local treatment of BCa.