Search Results

Now showing 1 - 10 of 16
  • Item
    Dynamical Phase Transitions for Flows on Finite Graphs
    (New York, NY [u.a.] : Springer Science + Business Media B.V., 2020) Gabrielli, Davide; Renger, D.R. Michiel
    We study the time-averaged flow in a model of particles that randomly hop on a finite directed graph. In the limit as the number of particles and the time window go to infinity but the graph remains finite, the large-deviation rate functional of the average flow is given by a variational formulation involving paths of the density and flow. We give sufficient conditions under which the large deviations of a given time averaged flow is determined by paths that are constant in time. We then consider a class of models on a discrete ring for which it is possible to show that a better strategy is obtained producing a time-dependent path. This phenomenon, called a dynamical phase transition, is known to occur for some particle systems in the hydrodynamic scaling limit, which is thus extended to the setting of a finite graph.
  • Item
    Exploring families of energy-dissipation landscapes via tilting: three types of EDP convergence
    (Berlin ; Heidelberg : Springer, 2021) Mielke, Alexander; Montefusco, Alberto; Peletier, Mark A.
    We introduce two new concepts of convergence of gradient systems (Q,Eε,Rε) to a limiting gradient system (Q,E0,R0). These new concepts are called ‘EDP convergence with tilting’ and ‘contact–EDP convergence with tilting.’ Both are based on the energy-dissipation-principle (EDP) formulation of solutions of gradient systems and can be seen as refinements of the Gamma-convergence for gradient flows first introduced by Sandier and Serfaty. The two new concepts are constructed in order to avoid the ‘unnatural’ limiting gradient structures that sometimes arise as limits in EDP convergence. EDP convergence with tilting is a strengthening of EDP convergence by requiring EDP convergence for a full family of ‘tilted’ copies of (Q,Eε,Rε). It avoids unnatural limiting gradient structures, but many interesting systems are non-convergent according to this concept. Contact–EDP convergence with tilting is a relaxation of EDP convergence with tilting and still avoids unnatural limits but applies to a broader class of sequences (Q,Eε,Rε). In this paper, we define these concepts, study their properties, and connect them with classical EDP convergence. We illustrate the different concepts on a number of test problems.
  • Item
    Large Deviations of Continuous Regular Conditional Probabilities
    (New York, NY [u.a.] : Springer Science + Business Media B.V., 2016) van Zuijlen, W.
    We study product regular conditional probabilities under measures of two coordinates with respect to the second coordinate that are weakly continuous on the support of the marginal of the second coordinate. Assuming that there exists a sequence of probability measures on the product space that satisfies a large deviation principle, we present necessary and sufficient conditions for the conditional probabilities under these measures to satisfy a large deviation principle. The arguments of these conditional probabilities are assumed to converge. A way to view regular conditional probabilities as a special case of product regular conditional probabilities is presented. This is used to derive conditions for large deviations of regular conditional probabilities. In addition, we derive a Sanov-type theorem for large deviations of the empirical distribution of the first coordinate conditioned on fixing the empirical distribution of the second coordinate.
  • Item
    Gradient and GENERIC Systems in the Space of Fluxes, Applied to Reacting Particle Systems
    (Basel : MDPI, 2018) Renger, D. R. Michiel
    In a previous work we devised a framework to derive generalised gradient systems for an evolution equation from the large deviations of an underlying microscopic system, in the spirit of the Onsager–Machlup relations. Of particular interest is the case where the microscopic system consists of random particles, and the macroscopic quantity is the empirical measure or concentration. In this work we take the particle flux as the macroscopic quantity, which is related to the concentration via a continuity equation. By a similar argument the large deviations can induce a generalised gradient or GENERIC system in the space of fluxes. In a general setting we study how flux gradient or GENERIC systems are related to gradient systems of concentrations. This shows that many gradient or GENERIC systems arise from an underlying gradient or GENERIC system where fluxes rather than densities are being driven by (free) energies. The arguments are explained by the example of reacting particle systems, which is later expanded to include spatial diffusion as well.
  • Item
    The enhanced Sanov theorem and propagation of chaos
    (Amsterdam [u.a.] : Elsevier, 2017) Deuschel, Jean-Dominique; Friz, Peter K.; Maurelli, Mario; Slowik, Martin
    We establish a Sanov type large deviation principle for an ensemble of interacting Brownian rough paths. As application a large deviations for the (-layer, enhanced) empirical measure of weakly interacting diffusions is obtained. This in turn implies a propagation of chaos result in a space of rough paths and allows for a robust analysis of the particle system and its McKean–Vlasov type limit, as shown in two corollaries.
  • Item
    Lower large deviations for geometric functionals
    ([Madralin] : EMIS ELibEMS, 2020) Hirsch, Christian; Jahnel, Benedikt; Tóbiás, András
    This work develops a methodology for analyzing large-deviation lower tails associated with geometric functionals computed on a homogeneous Poisson point process. The technique applies to characteristics expressed in terms of stabilizing score functions exhibiting suitable monotonicity properties. We apply our results to clique counts in the random geometric graph, intrinsic volumes of Poisson–Voronoi cells, as well as power-weighted edge lengths in the random geometric, k-nearest neighbor and relative neighborhood graph.
  • Item
    Precise Laplace asymptotics for singular stochastic PDEs: The case of 2D gPAM
    (Amsterdam [u.a.] : Elsevier, 2022) Friz, Peter K.; Klose, Tom
    We implement a Laplace method for the renormalised solution to the generalised 2D Parabolic Anderson Model (gPAM) driven by a small spatial white noise. Our work rests upon Hairer's theory of regularity structures which allows to generalise classical ideas of Azencott and Ben Arous on path space as well as Aida and Inahama and Kawabi on rough path space to the space of models. The technical cornerstone of our argument is a Taylor expansion of the solution in the noise intensity parameter: We prove precise bounds for its terms and the remainder and use them to estimate asymptotically irrevelant terms to arbitrary order. While most of our arguments are not specific to gPAM, we also outline how to adapt those that are.
  • Item
    Dynamical phase transitions for flows on finite graphs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Gabrielli, Davide; Renger, D. R. Michiel
    We study the time-averaged flow in a model of particles that randomly hop on a finite directed graph. In the limit as the number of particles and the time window go to infinity but the graph remains finite, the large-deviation rate functional of the average flow is given by a variational formulation involving paths of the density and flow. We give sufficient conditions under which the large deviations of a given time averaged flow is determined by paths that are constant in time. We then consider a class of models on a discrete ring for which it is possible to show that a better strategy is obtained producing a time-dependent path. This phenomenon, called a dynamical phase transition, is known to occur for some particle systems in the hydrodynamic scaling limit, which is thus extended to the setting of a finite graph.
  • Item
    Quenched large deviations for simple random walks on percolation clusters including long-range correlations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki
    We prove a quenched large deviation principle (LDP)for a simple random walk on a supercritical percolation cluster (SRWPC) on the lattice.The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and its vacant set and the level sets of the Gaussian free field. Inspired by the methods developed by Kosygina, Rezakhanlou and Varadhan ([KRV06]) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz ([Y08]) and Rosenbluth ([R06]) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures if the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main approach of our proofs are based on exploiting coercivity properties of the relative entropy in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the percolation cluster under supercriticality.
  • Item
    Dynamical large deviations of countable reaction networks under a weak reversibility condition
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Patterson, Robert I.A.; Renger, D.R. Michiel
    A dynamic large deviations principle for a countable reaction network including coagulation-fragmentation models is proved. The rate function is represented as the infimal cost of the reaction fluxes and a minimiser for this variational problem is shown to exist. A weak reversibility condition is used to control the boundary behaviour and to guarantee a representation for the optimal fluxes via a Lagrange multiplier that can be used to construct the changes of measure used in standard tilting arguments. Reflecting the pure jump nature of the approximating processes, their paths are treated as elements of a BV function space.