Search Results

Now showing 1 - 2 of 2
  • Item
    The Importance of the Representation of DMS Oxidation in Global Chemistry‐Climate Simulations
    (Hoboken, NJ : Wiley, 2021) Hoffmann, Erik Hans; Heinold, Bernd; Kubin, Anne; Tegen, Ina; Herrmann, Hartmut
    The oxidation of dimethyl sulfide (DMS) is key for the natural sulfate aerosol formation and its climate impact. Multiphase chemistry is an important oxidation pathway but neglected in current chemistry-climate models. Here, the DMS chemistry in the aerosol-chemistry-climate model ECHAM-HAMMOZ is extended to include multiphase methane sulfonic acid (MSA) formation in deliquesced aerosol particles, parameterized by reactive uptake. First simulations agree well with observed gas-phase MSA concentrations. The implemented formation pathways are quantified to contribute up to 60% to the sulfate aerosol burden over the Southern Ocean and Arctic/Antarctic regions. While globally the impact on the aerosol radiative forcing almost levels off, a significantly more positive solar radiative forcing of up to +0.1 W m−2 is computed in the Arctic (>60°N). The findings imply the need of both further laboratory and model studies on the atmospheric multiphase oxidation of DMS.
  • Item
    Marine nanogels as a source of atmospheric nanoparticles in the high Arctic
    (Hoboken, NJ : Wiley, 2013) Karl, Matthias; Leck, Caroline; Coz, Esther; Heintzenberg, Jost
    The high Arctic (north of 80°N) in summer is a region characterized by clean air and low abundances of preexisting particles. Marine colloidal nanogels i.e., assembled dissolved organic carbohydrate polymer networks have recently been confirmed to be present in both airborne particles and cloud water over the Arctic pack ice area. A novel route to atmospheric nanoparticles that appears to be operative in the high Arctic is suggested. It involves the injection of marine granular nanogels into the air from evaporating fog and cloud droplets, and is supported by observational and theoretical evidence obtained from a case study. Statistical analysis of the aerosol size distribution data recorded in the years 1991, 1996, 2001, and 2008 classified 75 nanoparticle events - covering 17% of the observed time period - as nanogel-type events, characterized by the spontaneous appearance of several distinct size bands below 200 nm diameter.