Search Results

Now showing 1 - 10 of 25
  • Item
    Phase transitions for a model with uncountable spin space on the Cayley tree: The general case
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Botirov, Golibjon; Jahnel, Benedikt
    In this paper we complete the analysis of a statistical mechanics model on Cayley trees of any degree, started in [EsHaRo12, EsRo10, BoEsRo13, JaKuBo14, Bo17]. The potential is of nearest-neighbor type and the local state space is compact but uncountable. Based on the system parameters we prove existence of a critical value θ c such that for θ≤θ c there is a unique translation-invariant splitting Gibbs measure. For θ c < θ there is a phase transition with exactly three translation-invariant splitting Gibbs measures. The proof rests on an analysis of fixed points of an associated non-linear Hammerstein integral operator for the boundary laws.
  • Item
    Hysteresis in the context of hydrogen storage and lithium-ion batteries
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Dreyer, Wolfgang; Guhlke, Clemens; Huth, Robert
    The processes of reversible storage of hydrogen in a metal by loading and unloading and of charging and discharging of lithium-ion batteries have many things in common. The both processes are accompanied by a phase transition and loading and unloading run along different paths, so that hysteretic behavior is observed. For hydrogen storage we consider a fine powder of magnesium (Mg) particles and lithium storage is studied for iron phosphate (FePO_4) particles forming the cathode of a lithium-ion battery. The mathematical models that are established in citeDGJ08 and citeDGH09a, describe phase transitions and hysteresis exclusively in a single particle and on that basis they can predict the observed hysteretic plots with almost horizontal plateaus. Interestingly the models predict that the coexistence of a 2-phase system in an individual particle disappears, if its size is below a critical value. However, measurements reveal that this is qualitatively not reflected by the mentioned hysteretic plots of loading and unloading. In other words: The behavior of a storage system consisting of many particles is qualitatively independent of the fact whether the individual particles itself develop a 2-phase system or if they remain in a single phase state. This apparent paradoxical observation will be resolved in this article. It will be shown that if each of the individual particles homogeneously distributes the supplied matter, nevertheless the many particle ensemble exhibits phase transition and hysteresis, because one of the two phases is realized in some part of the particles while the remaining part is in the other phase.
  • Item
    On a thermomechanical model of phase transitions in steel
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Chełminski, Krzysztof; Hömberg, Dietmar; Kern, Daniela
    We investigate a thermomechanical model of phase transitions in steel. The strain is assumed to be additively decomposed into an elastic and a thermal part as well as a contribution from transformation induced plasticity. The resulting model can be viewed as an extension of quasistatic linear thermoelasticity. We prove existence of a unique solution and conclude with some numerical simulations.
  • Item
    Site-monotonicity properties for reflection positive measures with applications to quantum spin systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Lees, Benjamin; Taggi, Lorenzo
    We consider a general statistical mechanics model on a product of local spaces and prove that, if the corresponding measure is reflection positive, then several site-monotonicity properties for the two-point function hold. As an application of such a general theorem, we derive site-monotonicity properties for the spin-spin correlation of the quantum Heisenberg antiferromagnet and XY model, we prove that such spin-spin correlations are point-wise uniformly positive on vertices with all odd coordinates -- improving previous positivity results which hold for the Cesàro sum -- and we derive site-monotonicity properties for the probability that a loop connects two vertices in various random loop models, including the loop representation of the spin O(N) model, the double-dimer model, the loop O(N) model, lattice permutations, thus extending the previous results of Lees and Taggi (2019).
  • Item
    Phase transition and hysteresis in a rechargeable lithium battery
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Dreyer, Wolfgang; Gaberšček, Miran; Jamnik, Janko
    We represent a model which describes the evolution of a phase transition that occurs in some part of a rechargeable lithium battery during the process of charging/discharging. The model is capable to simulate the hysteretic behavior of the voltage - charge characteristics. During discharging of the battery, the interstitial lattice sites of a small crystalline host system are filled up with lithium atoms and these are released again during charging. We show within the context of a sharp interface model that two mechanical phenomena go along with a phase transition that appears in the host system during supply and removal of lithium. At first the lithium atoms need more space than it is available by the interstitial lattice sites, which leads to a maximal relative change of the crystal volume of about $6%$. Furthermore there is an interface between two adjacent phases that has very large curvature of the order of magnitude 100 m, which evoke here a discontinuity of the normal component of the stress. In order to simulate the dynamics of the phase transitions and in particular the observed hysteresis we establish a new initial and boundary value problem for a nonlinear PDE system that can be reduced in some limiting case to an ODE system.
  • Item
    Mayer and virial series at low temperature
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Jansen, Sabine
    We analyze the Mayer pressure-activity and virial pressure-density series for a classical system of particles in continuous configuration space at low temperature. Particles interact via a finite range potential with an attractive tail. We propose physical interpretations of the Mayer and virial series' radius of convergence, valid independently of the question of phase transition: the Mayer radius corresponds to a fast increase from very small to finite density, and the virial radius corresponds to a cross-over from monatomic to polyatomic gas. Our results have consequences for the search of a low density, low temperature solid-gas phase transition, consistent with the Lee-Yang theorem for lattice gases and with the continuum Widom-Rowlinson mode.
  • Item
    Plane-like minimizers for a non-local Ginzburg-Landau-type energy in a periodic medium
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Cozzi, Matteo; Valdinoci, Enrico
    We consider a non-local phase transition equation set in a periodic medium and we construct solutions whose interface stays in a slab of prescribed direction and universal width. The solutions constructed also enjoy a local minimality property with respect to a suitable non-local energy functional.
  • Item
    Hysteresis and phase transition in many-particle storage systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Dreyer, Wolfgang; Guhlke, Clemens; Herrmann, Michael
    We study the behavior of systems consisting of ensembles of interconnected storage particles. Our examples concern the storage of lithium in many-particle electrodes of rechargeable lithium-ion batteries and the storage of air in a system of interconnected rubber balloons. We are particularly interested in those storage systems whose constituents exhibit non-monotone material behavior leading to transitions between two coexisting phases and to hysteresis. In the current study we consider the case that the time to approach equilibrium of a single storage particle is much smaller than the time for full charging of the ensemble. In this regime the evolution of the probability to find a particle of the ensemble in a certain state, may be described by a nonlocal conservation law of Fokker-Planck type. Two constant parameter control whether the ensemble transits the 2-phase region along a Maxwell line or along a hysteresis path or if the ensemble shows the same non-monotone behavior as its constituents.
  • Item
    Exponential decay of transverse correlations for spin systems with continuous symmetry and non-zero external field
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Lees, Benjamin; Taggi, Lorenzo
    We prove exponential decay of transverse correlations in the Spin O(N) model for arbitrary (non-zero) values of the external magnetic field and arbitrary spin dimension N > 1. Our result is new when N > 3, in which case no Lee-Yang theorem is available, it is an alternative to Lee-Yang when N = 2, 3, and also holds for a wide class of multi-component spin systems with continuous symmetry. The key ingredients are a representation of the model as a system of coloured random paths, a `colour-switch' lemma, and a sampling procedure which allows us to bound from above the `typical' length of the open paths.
  • Item
    Macroscopic loops in the $3d$ double-dimer model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Quitmann, Alexandra; Taggi, Lorenzo
    The double dimer model is defined as the superposition of two independent uniformly distributed dimer covers of a graph. Its configurations can be viewed as disjoint collections of self-avoiding loops. Our first result is that in ℤ d, d>2, the loops in the double dimer model are macroscopic. These are shown to behave qualitatively differently than in two dimensions. In particular, we show that, given two distant points of a large box, with uniformly positive probability there exists a loop visiting both points. Our second result involves the monomer double-dimer model, namely the double-dimer model in the presence of a density of monomers. These are vertices which are not allowed to be touched by any loop. This model depends on a parameter, the monomer activity, which controls the density of monomers. It is known from [Betz, Taggi] that a finite critical threshold of the monomer activity exists, below which a self-avoiding walk forced through the system is macroscopic. Our paper shows that, when d >2, such a critical threshold is strictly positive. In other words, the self-avoiding walk is macroscopic even in the presence of a positive density of monomers.