Search Results

Now showing 1 - 10 of 20
  • Item
    Unveiling Relations in the Industry 4.0 Standards Landscape Based on Knowledge Graph Embeddings
    (Cham : Springer, 2020) Rivas, Ariam; Grangel-González, Irlán; Collarana, Diego; Lehmann, Jens; Vidal, Maria-Esther; Hartmann, Sven; Küng, Josef; Kotsis, Gabriele; Tjoa, A Min; Khalil, Ismail
    Industry 4.0 (I4.0) standards and standardization frameworks have been proposed with the goal of empowering interoperability in smart factories. These standards enable the description and interaction of the main components, systems, and processes inside of a smart factory. Due to the growing number of frameworks and standards, there is an increasing need for approaches that automatically analyze the landscape of I4.0 standards. Standardization frameworks classify standards according to their functions into layers and dimensions. However, similar standards can be classified differently across the frameworks, producing, thus, interoperability conflicts among them. Semantic-based approaches that rely on ontologies and knowledge graphs, have been proposed to represent standards, known relations among them, as well as their classification according to existing frameworks. Albeit informative, the structured modeling of the I4.0 landscape only provides the foundations for detecting interoperability issues. Thus, graph-based analytical methods able to exploit knowledge encoded by these approaches, are required to uncover alignments among standards. We study the relatedness among standards and frameworks based on community analysis to discover knowledge that helps to cope with interoperability conflicts between standards. We use knowledge graph embeddings to automatically create these communities exploiting the meaning of the existing relationships. In particular, we focus on the identification of similar standards, i.e., communities of standards, and analyze their properties to detect unknown relations. We empirically evaluate our approach on a knowledge graph of I4.0 standards using the Trans∗ family of embedding models for knowledge graph entities. Our results are promising and suggest that relations among standards can be detected accurately.
  • Item
    Context-Based Entity Matching for Big Data
    (Cham : Springer, 2020) Tasnim, Mayesha; Collarana, Diego; Graux, Damien; Vidal, Maria-Esther; Janev, Valentina; Graux, Damien; Jabeen, Hajira; Sallinger, Emanuel
    In the Big Data era, where variety is the most dominant dimension, the RDF data model enables the creation and integration of actionable knowledge from heterogeneous data sources. However, the RDF data model allows for describing entities under various contexts, e.g., people can be described from its demographic context, but as well from their professional contexts. Context-aware description poses challenges during entity matching of RDF datasets—the match might not be valid in every context. To perform a contextually relevant entity matching, the specific context under which a data-driven task, e.g., data integration is performed, must be taken into account. However, existing approaches only consider inter-schema and properties mapping of different data sources and prevent users from selecting contexts and conditions during a data integration process. We devise COMET, an entity matching technique that relies on both the knowledge stated in RDF vocabularies and a context-based similarity metric to map contextually equivalent RDF graphs. COMET follows a two-fold approach to solve the problem of entity matching in RDF graphs in a context-aware manner. In the first step, COMET computes the similarity measures across RDF entities and resorts to the Formal Concept Analysis algorithm to map contextually equivalent RDF entities. Finally, COMET combines the results of the first step and executes a 1-1 perfect matching algorithm for matching RDF entities based on the combined scores. We empirically evaluate the performance of COMET on testbed from DBpedia. The experimental results suggest that COMET accurately matches equivalent RDF graphs in a context-dependent manner.
  • Item
    Case Study: ENVRI Science Demonstrators with D4Science
    (Cham : Springer, 2020) Candela, Leonardo; Stocker, Markus; Häggström, Ingemar; Enell, Carl-Fredrik; Vitale, Domenico; Papale, Dario; Grenier, Baptiste; Chen, Yin; Obst, Matthias; Zhao, Zhiming; Hellström, Margareta
    Whenever a community of practice starts developing an IT solution for its use case(s) it has to face the issue of carefully selecting “the platform” to use. Such a platform should match the requirements and the overall settings resulting from the specific application context (including legacy technologies and solutions to be integrated and reused, costs of adoption and operation, easiness in acquiring skills and competencies). There is no one-size-fits-all solution that is suitable for all application context, and this is particularly true for scientific communities and their cases because of the wide heterogeneity characterising them. However, there is a large consensus that solutions from scratch are inefficient and services that facilitate the development and maintenance of scientific community-specific solutions do exist. This chapter describes how a set of diverse communities of practice efficiently developed their science demonstrators (on analysing and producing user-defined atmosphere data products, greenhouse gases fluxes, particle formation, mosquito diseases) by leveraging the services offered by the D4Science infrastructure. It shows that the D4Science design decisions aiming at streamlining implementations are effective. The chapter discusses the added value injected in the science demonstrators and resulting from the reuse of D4Science services, especially regarding Open Science practices and overall quality of service.
  • Item
    Dynamic publication formats and collaborative authoring
    (Cham : Springer, 2014) Heller, Lambert; The, Ronald; Bartling, Sönke; Bartling, Sönke; Friesike, Sascha
    While Online Publishing has replaced most traditional printed journals in less than twenty years, today’s Online Publication Formats are still closely bound to the medium of paper. Collaboration is mostly hidden from the readership, and ‘final’ versions of papers are stored in ‘publisher PDF’ files mimicking print. Meanwhile new media formats originating from the web itself bring us new modes of transparent collaboration, feedback, continued refinement, and reusability of (scholarly) works: Wikis, Blogs and Code Repositories, to name a few. This chapter characterizes the potentials of Dynamic Publication Formats and analyzes necessary prerequisites. Selected tools specific to the aims, stages, and functions of Scholarly Publishing are presented. Furthermore, this chapter points out early examples of usage and further development from the field. In doing so, Dynamic Publication Formats are described as (a) a ‘parallel universe’ based on the commodification of (scholarly) media, and (b) as a much needed complement, slowly recognized and incrementally integrated into more efficient and dynamic workflows of production, improvement, and dissemination of scholarly knowledge in general.
  • Item
    Federated Query Processing
    (Cham : Springer, 2020) Endris, Kemele M.; Vidal, Maria-Esther; Graux, Damien; Janev, Valentina; Graux, Damien; Jabeen, Hajira; Sallinger, Emanuel
    Big data plays a relevant role in promoting both manufacturing and scientific development through industrial digitization and emerging interdisciplinary research. Semantic web technologies have also experienced great progress, and scientific communities and practitioners have contributed to the problem of big data management with ontological models, controlled vocabularies, linked datasets, data models, query languages, as well as tools for transforming big data into knowledge from which decisions can be made. Despite the significant impact of big data and semantic web technologies, we are entering into a new era where domains like genomics are projected to grow very rapidly in the next decade. In this next era, integrating big data demands novel and scalable tools for enabling not only big data ingestion and curation but also efficient large-scale exploration and discovery. Federated query processing techniques provide a solution to scale up to large volumes of data distributed across multiple data sources. Federated query processing techniques resort to source descriptions to identify relevant data sources for a query, as well as to find efficient execution plans that minimize the total execution time of a query and maximize the completeness of the answers. This chapter summarizes the main characteristics of a federated query engine, reviews the current state of the field, and outlines the problems that still remain open and represent grand challenges for the area.
  • Item
    Survey on Big Data Applications
    (Cham : Springer, 2020) Janev, Valentina; Pujić, Dea; Jelić, Marko; Vidal, Maria-Esther; Janev, Valentina; Graux, Damien; Jabeen, Hajira; Sallinger, Emanuel
    The goal of this chapter is to shed light on different types of big data applications needed in various industries including healthcare, transportation, energy, banking and insurance, digital media and e-commerce, environment, safety and security, telecommunications, and manufacturing. In response to the problems of analyzing large-scale data, different tools, techniques, and technologies have bee developed and are available for experimentation. In our analysis, we focused on literature (review articles) accessible via the Elsevier ScienceDirect service and the Springer Link service from more recent years, mainly from the last two decades. For the selected industries, this chapter also discusses challenges that can be addressed and overcome using the semantic processing approaches and knowledge reasoning approaches discussed in this book.
  • Item
    Question Answering on Scholarly Knowledge Graphs
    (Cham : Springer, 2020) Jaradeh, Mohamad Yaser; Stocker, Markus; Auer, Sören; Hall, Mark; Merčun, Tanja; Risse, Thomas; Duchateau, Fabien
    Answering questions on scholarly knowledge comprising text and other artifacts is a vital part of any research life cycle. Querying scholarly knowledge and retrieving suitable answers is currently hardly possible due to the following primary reason: machine inactionable, ambiguous and unstructured content in publications. We present JarvisQA, a BERT based system to answer questions on tabular views of scholarly knowledge graphs. Such tables can be found in a variety of shapes in the scholarly literature (e.g., surveys, comparisons or results). Our system can retrieve direct answers to a variety of different questions asked on tabular data in articles. Furthermore, we present a preliminary dataset of related tables and a corresponding set of natural language questions. This dataset is used as a benchmark for our system and can be reused by others. Additionally, JarvisQA is evaluated on two datasets against other baselines and shows an improvement of two to three folds in performance compared to related methods.
  • Item
    Ontology Design for Pharmaceutical Research Outcomes
    (Cham : Springer, 2020) Say, Zeynep; Fathalla, Said; Vahdati, Sahar; Lehmann, Jens; Auer, Sören; Hall, Mark; Merčun, Tanja; Risse, Thomas; Duchateau, Fabien
    The network of scholarly publishing involves generating and exchanging ideas, certifying research, publishing in order to disseminate findings, and preserving outputs. Despite enormous efforts in providing support for each of those steps in scholarly communication, identifying knowledge fragments is still a big challenge. This is due to the heterogeneous nature of the scholarly data and the current paradigm of distribution by publishing (mostly document-based) over journal articles, numerous repositories, and libraries. Therefore, transforming this paradigm to knowledge-based representation is expected to reform the knowledge sharing in the scholarly world. Although many movements have been initiated in recent years, non-technical scientific communities suffer from transforming document-based publishing to knowledge-based publishing. In this paper, we present a model (PharmSci) for scholarly publishing in the pharmaceutical research domain with the goal of facilitating knowledge discovery through effective ontology-based data integration. PharmSci provides machine-interpretable information to the knowledge discovery process. The principles and guidelines of the ontological engineering have been followed. Reasoning-based techniques are also presented in the design of the ontology to improve the quality of targeted tasks for data integration. The developed ontology is evaluated with a validation process and also a quality verification method.
  • Item
    Semantic and Knowledge Engineering Using ENVRI RM
    (Cham : Springer, 2020) Martin, Paul; Liao, Xiaofeng; Magagna, Barbara; Stocker, Markus; Zhao, Zhiming; Zhao, Zhiming; Hellström, Margareta
    The ENVRI Reference Model provides architects and engineers with the means to describe the architecture and operational behaviour of environmental and Earth science research infrastructures (RIs) in a standardised way using the standard terminology. This terminology and the relationships between specific classes of concept can be used as the basis for the machine-actionable specification of RIs or RI subsystems. Open Information Linking for Environmental RIs (OIL-E) is a framework for capturing architectural and design knowledge about environmental and Earth science RIs intended to help harmonise vocabulary, promote collaboration and identify common standards and technologies across different research infrastructure initiatives. At its heart is an ontology derived from the ENVRI Reference Model. Using this ontology, RI descriptions can be published as linked data, allowing discovery, querying and comparison using established Semantic Web technologies. It can also be used as an upper ontology by which to connect descriptions of RI entities (whether they be datasets, equipment, processes, etc.) that use other, more specific terminologies. The ENVRI Knowledge Base uses OIL-E to capture information about environmental and Earth science RIs in the ENVRI community for query and comparison. The Knowledge Base can be used to identify the technologies and standards used for particular activities and services and as a basis for evaluating research infrastructure subsystems and behaviours against certain criteria, such as compliance with the FAIR data principles.
  • Item
    FunMap: Efficient Execution of Functional Mappings for Knowledge Graph Creation
    (Cham : Springer, 2020) Jozashoori, Samaneh; Chaves-Fraga, David; Iglesias, Enrique; Vidal, Maria-Esther; Corcho, Oscar; Pan, Jeff Z.; Tamma, Valentina; d'Amato, Claudia; Janowicz, Kryztof; Fu, Bo; Polleres, Axel; Seneviratne, Oshani; Kagal, Lalana
    Data has exponentially grown in the last years, and knowledge graphs constitute powerful formalisms to integrate a myriad of existing data sources. Transformation functions – specified with function-based mapping languages like FunUL and RML+FnO – can be applied to overcome interoperability issues across heterogeneous data sources. However, the absence of engines to efficiently execute these mapping languages hinders their global adoption. We propose FunMap, an interpreter of function-based mapping languages; it relies on a set of lossless rewriting rules to push down and materialize the execution of functions in initial steps of knowledge graph creation. Although applicable to any function-based mapping language that supports joins between mapping rules, FunMap feasibility is shown on RML+FnO. FunMap reduces data redundancy, e.g., duplicates and unused attributes, and converts RML+FnO mappings into a set of equivalent rules executable on RML-compliant engines. We evaluate FunMap performance over real-world testbeds from the biomedical domain. The results indicate that FunMap reduces the execution time of RML-compliant engines by up to a factor of 18, furnishing, thus, a scalable solution for knowledge graph creation.