Search Results

Now showing 1 - 10 of 15
  • Item
    Nanoscopic interactions of colloidal particles can suppress millimetre drop splashing
    (London : Royal Soc. of Chemistry, 2021) Thoraval, Marie-Jean; Schubert, Jonas; Karpitschka, Stefan; Chanana, Munish; Boyer, François; Sandoval-Naval, Enrique; Dijksman, J. Frits; Snoeijer, Jacco H.; Lohse, Detlef
    The splashing of liquid drops onto a solid surface is important for a wide range of applications, including combustion and spray coating. As the drop hits the solid surface, the liquid is ejected into a thin horizontal sheet expanding radially over the substrate. Above a critical impact velocity, the liquid sheet is forced to separate from the solid surface by the ambient air, and breaks up into smaller droplets. Despite many applications involving complex fluids, their effects on splashing remain mostly unexplored. Here we show that the splashing of a nanoparticle dispersion can be suppressed at higher impact velocities by the interactions of the nanoparticles with the solid surface. Although the dispersion drop first shows the classical transition from deposition to splashing when increasing the impact velocity, no splashing is observed above a second higher critical impact velocity. This result goes against the commonly accepted understanding of splashing, that a higher impact velocity should lead to even more pronounced splashing. Our findings open new possibilities to deposit large amount of complex liquids at high speeds.
  • Item
    Fe3O4 Nanoparticles Grown on Cellulose/GO Hydrogels as Advanced Catalytic Materials for the Heterogeneous Fenton-like Reaction
    (Washington, DC : ACS Publications, 2019) Chen, Yian; Pötschke, Petra; Pionteck, Jürgen; Voit, Brigitte; Qi, Haisong
    Cellulose/graphene oxide (GO)/iron oxide (Fe3O4) composites were prepared by coprecipitating iron salts onto cellulose/GO hydrogels in a basic solution. X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared, and X-ray diffraction characterization showed that Fe3O4 was successfully coated on GO sheets and cellulose. Cellulose/GO/Fe3O4 composites showed excellent catalytic activity by maintaining almost 98% of the removal of acid orange 7 (AO7) and showed stability over 20 consecutive cycles. This performance is attributable to the synergistic effect of Fe3O4 and GO during the heterogeneous Fenton-like reaction. Especially, the cellulose/GO/Fe3O4 composites preserve their activity by keeping the ratio of Fe3+/Fe2+ at 2 even after 20 catalysis cycles, which is supported by XPS analysis.
  • Item
    Impact of the hypoxic phenotype on the uptake and efflux of nanoparticles by human breast cancer cells
    (London : Nature Publishing Group, 2018) Brownlee, William J.; Seib, F. Philipp
    Breast cancer cells adapt to the hypoxic tumoral environment by undergoing changes in metabolism, cell signalling, endo-lysosomal receptor uptake and recycling. The resulting hypoxic cell phenotype has the potential to undermine the therapeutic efficacy of nanomedicines designed for endocytic uptake and specific intracellular trafficking. The aim of this study was to examine the impact of hypoxia and simulated reperfusion on the in vitro uptake and release of nanomedicines by human breast cancer cells. Cells were exposed to a hypoxic preconditioning treatment in 1% oxygen for 6 and 24 hours to induce temporal changes in the hypoxic circuit (e.g. HIF-1α expression). The preconditioned cells were then dosed with nanoparticles for 45 or 180 minutes emulating nanomedicine access following tumor reperfusion. Hypoxic preconditioning significantly increased nanoparticle retention by up to 10% when compared to normoxic cultures, with the greatest relative difference between normoxic and hypoxic cultures occurring with a 45 minute dosing interval. Exocytosis studies indicated that the preconditioned cells had a significantly increased nanoparticle efflux (up to 9%) when compared to normoxic cells. Overall, we were able to show that hypoxic preconditioning regulates both the endocytosis and exocytosis of nanomedicines in human breast cancer cells.
  • Item
    Degradation Behavior of Silk Nanoparticles - Enzyme Responsiveness
    (Washington, DC : ACS Publ., 2018) Wongpinyochit, Thidarat; Johnston, Blair F.; Seib, F. Philipp
    Silk nanoparticles are viewed as promising vectors for intracellular drug delivery as they can be taken up into cells by endocytosis and trafficked to lysosomes, where lysosomal enzymes and the low pH trigger payload release. However, the subsequent degradation of the silk nanoparticles themselves still requires study. Here, we report the responsiveness of native and PEGylated silk nanoparticles to degradation following exposure to proteolytic enzymes (protease XIV and α-chymotrypsin) and papain, a cysteine protease. Both native and PEGylated silk nanoparticles showed similar degradation behavior over a 20 day exposure period (degradation rate: protease XIV > papain ≫ α-chymotrypsin). Within 1 day, the silk nanoparticles were rapidly degraded by protease XIV, resulting in a ∼50% mass loss, an increase in particle size, and a reduction in the amorphous content of the silk secondary structure. By contrast, 10 days of papain treatment was necessary to observe any significant change in nanoparticle properties, and α-chymotrypsin treatment had no effect on silk nanoparticle characteristics over the 20-day study period. Silk nanoparticles were also exposed ex vivo to mammalian lysosomal enzyme preparations to mimic the complex lysosomal microenvironment. Preliminary results indicated a 45% reduction in the silk nanoparticle size over a 5-day exposure. Overall, the results demonstrate that silk nanoparticles undergo enzymatic degradation, but the extent and kinetics are enzyme-specific.
  • Item
    High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn2+-Substituted CoFe2O4 Nanoparticles and Reduced Graphene Oxide as Shielding Materials against Electromagnetic Pollution
    (Washington, DC : ACS Publications, 2021-10-11) Anju; Yadav, Raghvendra Singh; Pötschke, Petra; Pionteck, Jürgen; Krause, Beate; Kuřitka, Ivo; Vilcakova, Jarmila; Skoda, David; Urbánek, Pavel; Machovsky, Michal; Masař, Milan; Urbánek, Michal; Jurca, Marek; Kalina, Lukas; Havlica, Jaromir
    The development of flexible, lightweight, and thin high-performance electromagnetic interference shielding materials is urgently needed for the protection of humans, the environment, and electronic devices against electromagnetic radiation. To achieve this, the spinel ferrite nanoparticles CoFe2O4 (CZ1), Co0.67Zn0.33Fe2O4 (CZ2), and Co0.33Zn0.67Fe2O4 (CZ3) were prepared by the sonochemical synthesis method. Further, these prepared spinel ferrite nanoparticles and reduced graphene oxide (rGO) were embedded in a thermoplastic polyurethane (TPU) matrix. The maximum electromagnetic interference (EMI) total shielding effectiveness (SET) values in the frequency range 8.2-12.4 GHz of these nanocomposites with a thickness of only 0.8 mm were 48.3, 61.8, and 67.8 dB for CZ1-rGO-TPU, CZ2-rGO-TPU, and CZ3-rGO-TPU, respectively. The high-performance electromagnetic interference shielding characteristics of the CZ3-rGO-TPU nanocomposite stem from dipole and interfacial polarization, conduction loss, multiple scattering, eddy current effect, natural resonance, high attenuation constant, and impedance matching. The optimized CZ3-rGO-TPU nanocomposite can be a potential candidate as a lightweight, flexible, thin, and high-performance electromagnetic interference shielding material.
  • Item
    Methods to characterize the dispersability of carbon nanotubes and their length distribution
    (Weinheim : Wiley-VCH Verl., 2012) Krause, Beate; Mende, Mandy; Petzold, Gudrun; Boldt, Regine; Pötschke, Petra
    Two main properties of carbon nanotube (CNT) materials are discussed in this contribution. First, a method to characterize the dispersability of CNT materials in aqueous surfactant solutions in presented, which also allows conclusions towards the dispersability in other media, like polymer melts. On the other hand it is shown, how the length of CNTs before and after processing, e.g., after melt mixing with thermoplastics, can be quantified. Both methods are illustrated with examples and the practical relevance is shown. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    Updating radical ring-opening polymerisation of cyclic ketene acetals from synthesis to degradation
    (Oxford : Elsevier, 2020) Folini, Jenny; Murad, Wigdan; Mehner, Fabian; Meier, Wolfgang; Gaitzsch, Jens
    Radical ring-opening polymerisation (RROP) of cyclic ketene acetals (CKAs) has gained momentum as it yields polyesters as biodegradable polymers from a radical polymerisation. In order to advance the polymerisation, some of its major limitations were addressed in the research presented, focussing on the four mainly used CKAs in modern research on RROP. Monomer synthesis has been updated towards a cobalt/TMSCl-based system that was performed reliably on several monomers at room temperature. Calculations using the density functional theory (DFT) revealed that the ring-opening step is energetically hampered in comparison to a ring-retaining reaction, which explained the challenges faced to promote the ring-opening reaction. Higher molecular weights up to four times the values reached by thermally initiated polymerisation were obtained by exploiting UV light and ultrasound as alternative methods to facilitate the polymerisation. The reaction procedure also influenced thermal properties of the polymers, which in turn affected the enzymatic degradation of nanoparticles based on those polymers. Altogether, the present study offers a holistic update to enhance the RROP of CKAs.
  • Item
    Nanoparticles for Directed Immunomodulation: Mannose-Functionalized Glycodendrimers Induce Interleukin-8 in Myeloid Cell Lines
    (Columbus, Ohio : American Chemical Society, 2021) Jatczak-Pawlik, Izabela; Gorzkiewicz, Michał; Studzian, Maciej; Zinke, Robin; Appelhans, Dietmar; Klajnert-Maculewicz, Barbara; Pułaski, Łukasz
    New therapeutic strategies for personalized medicine need to involve innovative pharmaceutical tools, for example, modular nanoparticles designed for direct immunomodulatory properties. We synthesized mannose-functionalized poly(propyleneimine) glycodendrimers with a novel architecture, where freely accessible mannose moieties are presented on poly(ethylene glycol)-based linkers embedded within an open-shell maltose coating. This design enhanced glycodendrimer bioactivity and led to complex functional effects in myeloid cells, with specific induction of interleukin-8 expression by mannose glycodendrimers detected in HL-60 and THP-1 cells. We concentrated on explaining the molecular mechanism of this phenomenon, which turned out to be different in both investigated cell lines: in HL-60 cells, transcriptional activation via AP-1 binding to the promoter predominated, while in THP-1 cells (which initially expressed less IL-8), induction was mediated mainly by mRNA stabilization. The success of directed immunomodulation, with synthetic design guided by assumptions about mannose-modified dendrimers as exogenous regulators of pro-inflammatory chemokine levels, opens new possibilities for designing bioactive nanoparticles. © 2021 The Authors. Published by American Chemical Society.
  • Item
    Cytotoxicity of dendrimers
    (Basel : MDPI, 2019) Janaszewska, Anna; Lazniewska, Joanna; Trzepiński, Przemysław; Klajnert-Maculewicz, Barbara
    Drug delivery systems are molecular platforms in which an active compound is packed into or loaded on a biocompatible nanoparticle. Such a solution improves the activity of the applied drug or decreases its side effects. Dendrimers are promising molecular platforms for drug delivery due to their unique properties. These macromolecules are known for their defined size, shape, and molecular weight, as well as their monodispersity, the presence of the void space, tailorable structure, internalization by cells, selectivity toward cells and intracellular components, protection of guest molecules, and controllable release of the cargo. Dendrimers were tested as carriers of various molecules and, simultaneously, their toxicity was examined using different cell lines. It was discovered that, in general, dendrimer cytotoxicity depended on the generation, the number of surface groups, and the nature of terminal moieties (anionic, neutral, or cationic). Higher cytotoxicity occurred for higher-generation dendrimers and for dendrimers with positive charges on the surface. In order to decrease the cytotoxicity of dendrimers, scientists started to introduce different chemical modifications on the periphery of the nanomolecule. Dendrimers grafted with polyethylene glycol (PEG), acetyl groups, carbohydrates, and other moieties did not affect cell viability, or did so only slightly, while still maintaining other advantageous properties. Dendrimers clearly have great potential for wide utilization as drug and gene carriers. Moreover, some dendrimers have biological properties per se, being anti-fungal, anti-bacterial, or toxic to cancer cells without affecting normal cells. Therefore, intrinsic cytotoxicity is a comprehensive problem and should be considered individually depending on the potential destination of the nanoparticle. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Interaction between immobilized polyelectrolyte complex nanoparticles and human mesenchymal stromal cells
    (Auckland : DOVE Medical Press, 2014) Woltmann, B.; Torger, B.; Müller, M.; Hempel, U.
    Background: Implant loosening or deficient osseointegration is a major problem in patients with systemic bone diseases (eg, osteoporosis). For this reason, the stimulation of the regional cell population by local and sustained drug delivery at the bone/implant interface to induce the formation of a mechanical stable bone is promising. The purpose of this study was to investigate the interaction of polymer-based nanoparticles with human bone marrow-derived cells, considering nanoparticles' composition and surface net charge. Materials and methods: Polyelectrolyte complex nanoparticles (PECNPs) composed of the polycations poly(ethyleneimine) (PEI), poly(L-lysine) (PLL), or (N,N-diethylamino)ethyldextran (DEAE) in combination with the polyanions dextran sulfate (DS) or cellulose sulfate (CS) were prepared. PECNPs' physicochemical properties (size, net charge) were characterized by dynamic light scattering and particle charge detector measurements. Biocompatibility was investigated using human mesenchymal stromal cells (hMSCs) cultured on immobilized PECNP films (5-50 nmol·cm-2) by analysis for metabolic activity of hMSCs in dependence of PECNP surface concentration by MTS (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, inner salt) assay, as well as cell morphology (phase contrast microscopy). Results: PECNPs ranging between ~50 nm and 150 nm were prepared. By varying the ratio of polycations and polyanions, PECNPs with a slightly positive (PEC+NP) or negative (PEC-NP) net charge were obtained. The PECNP composition significantly affected cell morphology and metabolic activity, whereas the net charge had a negligible influence. Therefore, we classified PECNPs into "variant systems" featuring a significant dose dependency of metabolic activity (DEAE/CS, PEI/DS) and "invariant systems" lacking such a dependency (DEAE/DS, PEI/CS). Immunofluorescence imaging of fluorescein isothiocyanate isomer I (FITC)-labeled PECNPs suggested internalization into hMSCs remaining stable for 8 days. Conclusion: Our study demonstrated that PECNP composition affects hMSC behavior. In particular, the PEI/CS system showed biocompatibility in a wide concentration range, representing a suitable system for local drug delivery from PECNP-functionalized bone substitute materials.