Search Results

Now showing 1 - 3 of 3
  • Item
    Long-term behavior of the concentration of the minor constituents in the mesosphere-a model study
    (Göttingen : Copernicus, 2009) Grygalashvyly, M.; Sonnemann, G.R.; Hartogh, P.
    We investigate the influence the rising concentrations of methane, nitrous oxide and carbon dioxide which have occurred since the pre-industrial era, have had on the chemistry of the mesosphere. For this investigation we use our global 3-D-model COMMA-IAP which was designed for the exploration of the MLT-region and in particular the extended mesopause region. Assumptions and approximations for the trends in the Lyman-flux (needed for the water vapor dissociation rate), methane and the water vapor mixing ratio at the hygropause are necessary to accomplish this study. To approximate the solar Lyman-α flux back to the pre-industrial time, we derived a quadratic fit using the sunspot number record which extends back to 1749 and is the only solar proxy available for the Lyman-α flux prior to 1947. We assume that methane increases with a constant growth rate from the pre-industrial era to the present. An unsolved problem for the model calculations consists of how the water vapor mixing ratio at the hygropause should be specified during this period. We assume that the hygropause was dryer during pre-industrial times than the present. As a consequence of methane oxidation, the model simulation indicates that the middle atmosphere has become more humid as a result of the rising methane concentration, but with some dependence on height and with a small time delay of few years. The solar influence on the water vapor mixing ratio is insignificant below about 80 km in summer high latitudes, but becomes increasingly more important above this altitude. The enhanced water vapor concentration increasesthe hydrogen radical concentration and reduces the mesospheric ozone. A second region of stronger ozone decrease is located in the vicinity of the stratopause. Increases in CO2 concentration enhance slightly the concentration of CO in the mesosphere. However, its influence upon the chemistry is small and its main effect is connected with a cooling of the upper atmosphere. The long-term behavior of water vapor is discussed in particular with respect to its impact on the NLC region.
  • Item
    Tracing the Snowball bifurcation of aquaplanets through time reveals a fundamental shift in critical-state dynamics
    (Göttingen : Copernicus, 2023) Feulner, Georg; Bukenberger, Mona; Petri, Stefan
    The instability with respect to global glaciation is a fundamental property of the climate system caused by the positive ice-albedo feedback. The atmospheric concentration of carbon dioxide (CO2) at which this Snowball bifurcation occurs changes through Earth's history, most notably because of the slowly increasing solar luminosity. Quantifying this critical CO2 concentration is not only interesting from a climate dynamics perspective but also constitutes an important prerequisite for understanding past Snowball Earth episodes, as well as the conditions for habitability on Earth and other planets. Earlier studies are limited to investigations with very simple climate models for Earth's entire history or studies of individual time slices carried out with a variety of more complex models and for different boundary conditions, making comparisons and the identification of secular changes difficult. Here, we use a coupled climate model of intermediate complexity to trace the Snowball bifurcation of an aquaplanet through Earth's history in one consistent model framework. We find that the critical CO2 concentration decreased more or less logarithmically with increasing solar luminosity until about 1 billion years ago but dropped faster in more recent times. Furthermore, there was a fundamental shift in the dynamics of the critical state about 1.2 billion years ago (unrelated to the downturn in critical CO2 values), driven by the interplay of wind-driven sea-ice dynamics and the surface energy balance: for critical states at low solar luminosities, the ice line lies in the Ferrel cell, stabilised by the poleward winds despite moderate meridional temperature gradients under strong greenhouse warming. For critical states at high solar luminosities, on the other hand, the ice line rests at the Hadley cell boundary, stabilised against the equatorward winds by steep meridional temperature gradients resulting from the increased solar energy input at lower latitudes and stronger Ekman transport in the ocean.
  • Item
    Effective CO2 lifetime and future CO2 levels based on fit function
    (Göttingen : Copernicus, 2013) Sonnemann, G.R.; Grygalashvyly, M.
    The estimated global CO2 emission rates and the measured atmospheric CO2 concentrations show that only a certain share of the emitted CO2 accumulates in the atmosphere. For given atmospheric emissions of CO2, the effective lifetime determines its accumulation in the atmosphere and, consequently, its impact on the future global warming. We found that on average the inferred effective lifetime of CO2 decreases as its atmospheric concentration increases, reducing the rate of its accumulation in the atmosphere. We derived a power function that fits the varying lifetimes. Based on this fitting function, we calculated the increase of CO2 for different scenarios of future global emission rates.