Search Results

Now showing 1 - 3 of 3
  • Item
    Ozone–gravity wave interaction in the upper stratosphere/lower mesosphere
    (Katlenburg-Lindau : EGU, 2022) Gabriel, Axel
    The increase in amplitudes of upward propagating gravity waves (GWs) with height due to decreasing density is usually described by exponential growth. Recent measurements show some evidence that the upper stratospheric/lower mesospheric gravity wave potential energy density (GWPED) increases more strongly during the daytime than during the nighttime. This paper suggests that ozone-gravity wave interaction can principally produce such a phenomenon. The coupling between ozone-photochemistry and temperature is particularly strong in the upper stratosphere where the time-mean ozone mixing ratio decreases with height. Therefore, an initial ascent (or descent) of an air parcel must lead to an increase (or decrease) in ozone and in the heating rate compared to the environment, and, hence, to an amplification of the initial wave perturbation. Standard solutions of upward propagating GWs with linear ozone-temperature coupling are formulated, suggesting amplitude amplifications at a specific level during daytime of 5ĝ€¯% to 15ĝ€¯% for low-frequency GWs (periods ≥4ĝ€¯h), as a function of the intrinsic frequency which decreases if ozone-temperature coupling is included. Subsequently, the cumulative amplification during the upward level-by-level propagation leads to much stronger GW amplitudes at upper mesospheric altitudes, i.e., for single low-frequency GWs, up to a factor of 1.5 to 3 in the temperature perturbations and 3 to 9 in the GWPED increasing from summer low to polar latitudes. Consequently, the mean GWPED of a representative range of mesoscale GWs (horizontal wavelengths between 200 and 1100ĝ€¯km, vertical wavelengths between 3 and 9ĝ€¯km) is stronger by a factor of 1.7 to 3.4 (2 to 50ĝ€¯Jĝ€¯kg-1, or 2ĝ€¯% to 50ĝ€¯% in relation to the observed order of 100ĝ€¯Jĝ€¯kg-1, assuming initial GW perturbations of 1 to 2ĝ€¯K in the middle stratosphere). Conclusively, the identified process might be an important component in the middle atmospheric circulation, which has not been considered up to now.
  • Item
    The feedback of midlatitude waves onto the Hadley cell in a simple general circulation model
    (Milton Park : Taylor & Francis, 1996) Becker, E.; Schmitz, G.; Geprägs, R.
    We present self-consistent comparisons of axissymmetric and 3-dimensional simulations of the tropospheric circulation under idealized physical conditions. These reveal a feedback of transient eddies onto the Hadley circulation which, first, strongly depends on equatorial heating and, second, is in case of realistic heating quite different from prescribed eddy forcing. A quantitative estimation for the eddy-induced mixing of vorticity into the poleward flow of the Hadley cell is given. The proposed relation is in accordance with observations. It is derived from the computational result that eddy momentum flux convergence is of the same order as the equatorward flux of relative vorticity generated by the Hadley circulation. Evaluation of the local budgets of sensible heat gives rise to a clear picture of how the poleward heat transports due to Hadley circulation and transient eddies interlock. This mechanism is found to be essential for an interpretation of the eddy feedback.
  • Item
    The rôle of orographically and thermally forced stationary waves in the causation of the residual circulation
    (Milton Park : Taylor & Francis, 1999) Becker, E.; Schmitz, G.
    Several experiments performed with an idealized troposphere–stratosphere GCM are comparedto estimate the impact of orography and prescribed local heat sources on the residual circulationin the northern winter stratosphere. It is found that only the combined action of orographicand thermal wave forcing in northern midlatitudes is capable of inducing a residual circulationreaching continuously from tropical to polar latitudes at stratospheric altitudes. Intensificationsof the residual circulation in response to modified forcing of stationary waves are generallyassociated with, firstly, a reduced polar night jet accompanied by enhanced easterlies inlow and summer hemispheric latitudes and, secondly, substantial warming of the polar nightstratosphere completely compensated by cooling in the tropics and subtropics.