Search Results

Now showing 1 - 10 of 201
  • Item
    Mechanisms of bonding effected by nanoparticles in zirconia coatings applied by spraying of suspensions
    (SaarbrĂ¼cke : Leibniz-Institut fĂ¼r Neue Materialien, 2008) Adam, Jens; Aslan, Mesut; Drumm, Robert; Veith, Michael
    Zirconia coatings consisting of a mixture of coarse and fine grained zirconia powders prepared by spraying of suspensions and subsequent thermal treatment at limited temperatures (up to 500°C) are poor in adherence and in intrinsic mechanical strength. We have shown elsewhere that mechanical properties of these coatings can be improved clearly by adding a small amount of nanoscaled zirconia. Here, the structural and the chemical development of this coating material and of the nanoparticles is examined to gain information about the underlying bonding mechanisms. The applied temperature is relatively low in comparison to the usual onset temperature of accelerated sintering. Nevertheless, the results show that diffusion controlled material transport mechanisms play their role in bonding. The condensation of surface OH groups may participate in bonding, too. These first results confirm the potential of nanoparticles to act as inorganic binder. Additional research effort to clarify the underlying mechanisms in detail is of interest. For the practical side, it can be concluded that the resulting effect of mechanical consolidation of ceramic structures at relatively low temperatures enables new ceramic applications, for example a new type of ceramic coatings on metallic substrates.
  • Item
    A block copolymer templated approach for the preparation of nanoporous polymer structures and cellulose fiber hybrids by ozone treatment
    (Cambridge : RSC Publ., 2022) Gemmer, Lea; Hu, Qiwei; Niebuur, Bart-Jan; Kraus, Tobias; Balzer, Bizan N.; Gallei, Markus
    Functional amphiphilic block copolymers (BCPs) are versatile, smart, and promising materials that are often used as soft templates in nanoscience. BCPs generally feature the capability of microphase-separation leading to various interesting morphologies at the nanometer length scale. Materials derived from BCPs can be converted into porous structures while retaining the underlying morphology of the matrix material. Here, a convenient and scalable approach for the fabrication of porous functional polyvinylpyridines (P2VP) is introduced. The BCP polyisoprene-block-P2VP (PI-b-P2VP) is obtained via sequential anionic polymerization of the respective monomers and used to form either BCP films in the bulk state or a soft template in a composite with cellulose fibers. Cross-linking of the BCPs with 1,4-diiodobutane is conducted and subsequently PI domains are selectively degraded inside the materials using ozone, while preserving the porous and tailor-made P2VP nanostructure. Insights into the feasibility of the herein presented strategy is supported by various polymer characterization methods comprising nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), and differential scanning calorimetry (DSC). The resulting bulk- and composite materials are investigated regarding their morphology and pore formation by scanning electron microscopy (SEM), atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS). Furthermore, chemical conversions were examined by energy dispersive X-ray spectroscopy (EDS), attenuated total reflection Fourier-transformation infrared spectroscopy (ATR-FTIR) and water contact angle (WCA) measurements. By this convenient strategy the fabrication of functional porous P2VP in the bulk state and also within sustainable cellulose composite materials is shown, paving the synthetic strategy for the generation of a new family of stimuli-responsive sustainable materials.
  • Item
    Fabrication of metal nanoparticle arrays by controlled decomposition of polymer particles
    (Bristol : IOP Publishing, 2013) Brodoceanu, Daniel; Fang, Cheng; Voelcker, Nicolas Hans; Bauer, Christina T.; Wonn, Anne; Kroner, Elmar; Arzt, Eduard; Kraus, Tobias
    We report a novel fabrication method for ordered arrays of metal nanoparticles that exploits the uniform arrangement of polymer beads deposited as close-packed monolayers. In contrast to colloidal lithography that applies particles as masks, we used thermal decomposition of the metal-covered particles to precisely define metal structures. Large arrays of noble metal (Au, Ag, Pt) nanoparticles were produced in a three-step process on silicon, fused silica and sapphire substrates, demonstrating the generality of this approach. Polystyrene spheres with diameters ranging between 110 nm and 1 µm were convectively assembled into crystalline monolayers, coated with metal and annealed in a resistive furnace or using an ethanol flame. The thermal decomposition of the polymer microspheres converted the metal layer into particles arranged in hexagonal arrays that preserved the order of the original monolayer. Both the particle size and the interparticle distance were adjusted via the thickness of the metal coating and the sphere diameter, respectively.
  • Item
    Flexible and transparent electrodes imprinted from Au nanowires: stability and ageing
    (Cambridge : Royal Society of Chemistry, 2022) Engel, Lukas F.; GonzĂ¡lez-GarcĂ­a, Lola; Kraus, Tobias
    We study the stability of flexible transparent electrodes (FTEs) that were self-assembled from ultra-thin gold nanowires (AuNW) by direct nanoimprinting of inks with different particle concentrations (1 to 10 mg mL−1). The resulting lines were less than 3 μm wide and contained bundles of AuNW with oleylamine (OAm) ligand shells. Small-angle X-ray scattering confirmed a concentration-independent bundle structure. Plasma sintering converted the wire assemblies into lines with a thin metal shell that contributes most to electrical conductivity and covers a hybrid core. We studied the relative change in sheet resistance and the morphology of the FTEs with time. The sheet resistance increased at all concentrations, but at different rates. The metal shell aged by de-wetting and pore formation. The hybrid core de-mixed and densified, which led to a partial collapse of the shell. Residual organics migrated through the shell via its pores. Lines formed at low concentration (cAu = 2 to 3 mg mL−1) contained less residual organics and aged slower than those formed at high cAu ≥ 5 mg mL−1. We passivated the conductive shell with thin, adsorbed layers of PEDOT:PSS and found that it decelerated degradation by slowing surface diffusion and hindering further rupture of the shell. Thick capping layers prevented degradation entirely and stopped pore formation.
  • Item
    Light-Emitting Devices – Luminescence from Low-Dimensional Nanostructures
    (London : IntechOpen, 2014) Mousavi, S.H.; Jafari Mohammdi, S.A.; Haratizadeh, H.; Oliveira, Peter W. de
    [no abstract available]
  • Item
    Prussian blue and its analogues as functional template materials: control of derived structure compositions and morphologies
    (London [u.a.] : RSC, 2023) Bornamehr, Behnoosh; Presser, Volker; Zarbin, Aldo J. G.; Yamauchi, Yusuke; Husmann, Samantha
    Hexacyanometallates, known as Prussian blue (PB) and its analogues (PBAs), are a class of coordination compounds with a regular and porous open structure. The PBAs are formed by the self-assembly of metallic species and cyanide groups. A uniform distribution of each element makes the PBAs robust templates to prepare hollow and highly porous (hetero)nanostructures of metal oxides, sulfides, carbides, nitrides, phosphides, and (N-doped) carbon, among other compositions. In this review, we examine methods to derive materials from PBAs focusing on the correlation between synthesis steps and derivative morphologies and composition. Insights into catalytic and electrochemical properties resulting from different derivatization strategies are also presented. We discuss challenges in manipulating the derivatives' properties, give perspectives of synthetic approaches for the target applications and present an outlook on less investigated grounds in Prussian blue derivatives.
  • Item
    Adhesion of a rigid punch to a confined elastic layer revisited
    (Milton Park : Taylor & Francis, 2017) Hensel, René; McMeeking, Robert M.; Kossa, Attila
    The adhesion of a punch to a linear elastic, confined layer is investigated. Numerical analysis is performed to determine the equivalent elastic modulus in terms of layer confinement. The size of the layer relative to the punch radius and its Poisson’s ratio are found to affect the layer stiffness. The results reveal that the equivalent modulus of a highly confined layer depends on its Poisson’s ratio, whereas, in contrast, an unconfined layer is only sensitive to the extent of the elastic film. The solutions of the equivalent modulus obtained from the simulations are fitted by an analytical function that, subsequently, is utilized to deduce the energy release rate for detachment of the punch via linear elastic fracture mechanics. The energy release rate strongly varies with layer confinement. Regimes for stable and unstable crack growth can be identified that, in turn, are correlated to interfacial stress distributions to distinguish between different detachment mechanisms.
  • Item
    Electroactive nanoinjection platform for intracellular delivery and gene silencing
    (London : Biomed Central, 2023) Shokouhi, Ali-Reza; Chen, Yaping; Yoh, Hao Zhe; Murayama, Takahide; Suu, Koukou; Morikawa, Yasuhiro; Brenker, Jason; Alan, Tuncay; Voelcker, Nicolas H.; Elnathan, Roey
    Background: Nanoinjection—the process of intracellular delivery using vertically configured nanostructures—is a physical route that efficiently negotiates the plasma membrane, with minimal perturbation and toxicity to the cells. Nanoinjection, as a physical membrane-disruption-mediated approach, overcomes challenges associated with conventional carrier-mediated approaches such as safety issues (with viral carriers), genotoxicity, limited packaging capacity, low levels of endosomal escape, and poor versatility for cell and cargo types. Yet, despite the implementation of nanoinjection tools and their assisted analogues in diverse cellular manipulations, there are still substantial challenges in harnessing these platforms to gain access into cell interiors with much greater precision without damaging the cell’s intricate structure. Here, we propose a non-viral, low-voltage, and reusable electroactive nanoinjection (ENI) platform based on vertically configured conductive nanotubes (NTs) that allows for rapid influx of targeted biomolecular cargos into the intracellular environment, and for successful gene silencing. The localization of electric fields at the tight interface between conductive NTs and the cell membrane drastically lowers the voltage required for cargo delivery into the cells, from kilovolts (for bulk electroporation) to only ≤ 10 V; this enhances the fine control over membrane disruption and mitigates the problem of high cell mortality experienced by conventional electroporation. Results: Through both theoretical simulations and experiments, we demonstrate the capability of the ENI platform to locally perforate GPE-86 mouse fibroblast cells and efficiently inject a diverse range of membrane-impermeable biomolecules with efficacy of 62.5% (antibody), 55.5% (mRNA), and 51.8% (plasmid DNA), with minimal impact on cells’ viability post nanoscale-EP (> 90%). We also show gene silencing through the delivery of siRNA that targets TRIOBP, yielding gene knockdown efficiency of 41.3%. Conclusions: We anticipate that our non-viral and low-voltage ENI platform is set to offer a new safe path to intracellular delivery with broader selection of cargo and cell types, and will open opportunities for advanced ex vivo cell engineering and gene silencing. Graphical abstract: [Figure not available: see fulltext.]
  • Item
    Vanadia–titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storage
    (Cambridge : Royal Society of Chemistry, 2016) Fleischamann, Simon; Tolosa, Aura; Zieger, Marco; KrĂ¼ner, Benjamin; Peter, Nicolas J.; Grobelsek, Ingrid; Quade, Antje; Kruth, Angela; Presser, Volker
    Atomic layer deposition has proven to be a particularly attractive approach for ecorating mesoporous carbon substrates with redox active metal oxides for lectrochemical energy storage. This study, for the first time, capitalizes on the cyclic character of atomic layer deposition to obtain highly conformal and atomically controlled decoration of carbon onions with alternating stacks of vanadia and titania. The addition of 25 mass% TiO2 leads to expansion of the VO2 unit cell, thus greatly enhancing lithium intercalation capacity and kinetics. Electrochemical characterization revealed an ultrahigh discharge capacity of up to 382 mA h g^-1 of the composite electrode (554 mA h g^-1 per metal oxide) with an impressive capacity retention of 82 mA h g^-1 (120 mA h g^-1 per metal oxide) at a high discharge rate of 20 A g^-1 or 52C. Stability benchmarking showed stability over 3000 cycles when discharging to a reduced potential of ^-1.8 V vs. carbon. These capacity values are among the highest reported for any metal oxide system, while in addition, upercapacitor-like power performance and longevity are achieved. At a device level, high specific energy and power of up to 110 W h kg^-1 and 6 kW kg^-1, respectively, were achieved when employing the hybrid material as anode versus activated carbon cathode.
  • Item
    Niobium carbide nanofibers as a versatile precursor for high power supercapacitor and high energy battery electrodes
    (London [u.a.] : RSC, 2016) Tolosa, Aura; KrĂ¼ner, Benjamin; Fleischmann, Simon; Jäckel, Nicolas; Zeiger, Marco; Aslan, Mesut; Grobelsek, Ingrid; Presser, Volker
    This study presents electrospun niobium carbide/carbon (NbC/C) hybrid nanofibers, with an average diameter of 69 ± 30 nm, as a facile precursor to derive either highly nanoporous niobium carbide-derived carbon (NbC–CDC) fibers for supercapacitor applications or niobium pentoxide/carbon (Nb2O5/C) hybrid fibers for battery-like energy storage. In all cases, the electrodes consist of binder-free and free-standing nanofiber mats that can be used without further conductive additives. Chlorine gas treatment conformally transforms NbC nanofiber mats into NbC–CDC fibers with a specific surface area of 1508 m2 g−1. These nanofibers show a maximum specific energy of 19.5 W h kg−1 at low power and 7.6 W h kg−1 at a high specific power of 30 kW kg−1 in an organic electrolyte. CO2 treatment transforms NbC into T-Nb2O5/C hybrid nanofiber mats that provide a maximum capacity of 156 mA h g−1. The presence of graphitic carbon in the hybrid nanofibers enabled high power handling, maintaining 50% of the initial energy storage capacity at a high rate of 10 A g−1 (64 C-rate). When benchmarked for an asymmetric full-cell, a maximum specific energy of 86 W h kg−1 was obtained. The high specific power for both systems, NbC–CDC and T-Nb2O5/C, resulted from the excellent charge propagation in the continuous nanofiber network and the high graphitization of the carbon structure.