Search Results

Now showing 1 - 10 of 10
  • Item
    Magnetic quantum oscillations of diagonal conductivity in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall effect
    (Milton Park : Taylor & Francis, 2009) Gvozdikov, V.M.; Taut, M.
    We report on analytical and numerical studies of the magnetic quantum oscillations of the diagonal conductivity σxx in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a system differs from the conventional IQHE, in which the finite width of the Landau bands is due to disorder only. The superlattice modulation potential yields a fractal splitting of the Landau levels into Hofstadter minibands. For rational flux through a unit cell, the minibands have a finite width and intrinsic dispersion relations. We consider a regime, now accessible experimentally, in which disorder does not wash out the fractal internal gap structure of the Landau bands completely. We found the following distinctions from the conventional IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are split due to the Hofstadter miniband structure of Landau bands; (ii) the number of split peaks in the bunch, their positions and heights depend irregularly on the magnetic field and the Fermi energy; (iii) the gaps between the split Landau bands (and related quantum Hall plateaus) become narrower with the superlattice modulation than without it.
  • Item
    Momentum-resolved superconducting gap in the bulk of Ba1-xK xFe2As2 from combined ARPES and μSR measurements
    (Milton Park : Taylor & Francis, 2009) Evtushinsky, D.V.; Inosov, D.S.; Zabolotnyy, V.B.; Viazovska, M.S.; Khasanov, R.; Amato, A.; Klauss, H.-H.; Luetkens, H.; Niedermayer, Ch.; Sun, G.L.; Hinkov, V.; Lin, C.T.; Varykhalov, A.; Koitzsch, A.; Knupfer, M.; Büchner, B.; Kordyuk, A.A.; Borisenko, S.V.
    Here we present a calculation of the temperature-dependent London penetration depth, λ(T), in Ba1-xKxFe 2As2 (BKFA) on the basis of the electronic band structure (Zabolotnyy et al 2009 Nature 457 569, Zabolotnyy et al 2009 Physica C 469 448) and momentum-dependent superconducting gap (Evtushinsky et al 2009 Phys. Rev. B 79 054517) extracted from angleresolved photoemission spectroscopy (ARPES) data. The results are compared to the direct measurements of λ(T) by muon spin rotation (μSR) (Khasanov et al 2009 Phys. Rev. Lett. 102 187005). The value of λ(T = 0), calculated with no adjustable parameters, equals 270 nm, while the directly measured one is 320 nm; the temperature dependence λ(T) is also easily reproduced. Such agreement between the two completely different approaches allows us to conclude that ARPES studies of BKFA are bulk-representative. Our review of the available experimental studies of the superconducting gap in the new ironbased superconductors in general allows us to state that most of them bear two nearly isotropic gaps with coupling constants 2ΔkBTc = 2.5±1.5 and 7±2.
  • Item
    Absorption and photoemission spectroscopy of rare-earth oxypnictides
    (Milton Park : Taylor & Francis, 2009) Kroll, T.; Roth, F.; Koitzsch, A.; Kraus, R.; Batchelor, D.R.; Werner, J.; Behr, G.; Büchner, B.; Knupfer, M.
    The electronic structure of various rare-earth oxypnictides has been investigated by performing Fe L2, 3 x-ray absorption spectroscopy, and Fe 2p and valence band x-ray photoemission spectroscopy. As representative samples the non-superconducting parent compounds LnFeAsO (Ln=La, Ce, Sm and Gd) have been chosen and measured at 25 and 300 K, i.e. below and above the structural and magnetic phase transition at ~150 K. We find no significant change of the electronic structure of the FeAs layers when switching between the different rare-earth ions or when varying the temperature below and above the transition temperatures. Using a simple two-configuration model, we find qualitative agreement with the Fe 2p3/2 core-level spectrum, which allows for a qualitative explanation of the experimental spectral shapes.
  • Item
    Orbital and spin effects for the upper critical field in As-deficient disordered Fe pnictide superconductors
    (Milton Park : Taylor & Francis, 2009) Fuchs, G.; Drechsler, S.-L.; Kozlova, N.; Bartkowiak, M.; Hamann-Borrero, J.E.; Behr, G.; Nenkov, K.; Klauss, H.-H.; Maeter, H.; Amato, A.; Luetkens, H.; Kwadrin, A.; Khasanov, R.; Freudenberger, J.; Köhler, A.; Knupfer, M.; Arushanov, E.; Rosner, H.; Büchner, B.; Schultz, L.
    We report upper critical field Bc2(T) data for LaO0.9F0.1FeAs1- δ in a wide temperature and field range up to 60 T. The large slope of Bc2≈- 5.4 to -6.6 T K-1 near an improved Tc≈28.5 K of the in-plane Bc2(T) contrasts with a flattening starting near 23 K above 30 T we regard as the onset of Pauli-limited behaviour (PLB) with Bc2(0)≈63–68 T. We interpret a similar hitherto unexplained flattening of the Bc2(T) curves reported for at least three other disordered closely related systems, Co-doped BaFe2As2, (Ba,K) Fe2As2 and NdO0.7F0.3FeAs (all single crystals), for applied fields H∥(a,b), also as a manifestation of PLB. Their Maki parameters have been estimated by analysing their Bc2(T) data within the Werthamer–Helfand–Hohenberg approach. The pronounced PLB of (Ba, K)Fe2As2 single crystals obtained from an Sn flux is attributed also to a significant As deficiency detected by wavelength dispersive x-ray spectroscopy as reported by Ni et al (2008 Phys. Rev. B 78 014507). Consequences of our results are discussed in terms of disorder effects within conventional superconductivity (CSC) and unconventional superconductivity (USC). USC scenarios with nodes on individual Fermi surface sheets (FSS), e.g. p- and d-wave SC, can be discarded for our samples. The increase of dBc2/dT|Tc by sizeable disorder provides evidence for an important intraband (intra-FSS) contribution to the orbital upper critical field. We suggest that it can be ascribed either to an impurity-driven transition from s± USC to CSC of an extended s++-wave state or to a stabilized s±-state provided As-vacancies cause predominantly strong intraband scattering in the unitary limit. We compare our results with Bc2 data from the literature, which often show no PLB for fields below 60–70 T probed so far. A novel disorder-related scenario of a complex interplay of SC with two different competing magnetic instabilities is suggested.
  • Item
    Dynamics of graphene growth on a metal surface: A time-dependent photoemission study
    (Milton Park : Taylor & Francis, 2009) Grüneis, Alexander; Kummer, Kurt; Vyalikh, Denis V.
    Applying time-dependent photoemission we unravel the graphene growth process on a metallic surface by chemical vapor deposition (CVD). Graphene CVD growth is in stark contrast to the standard growth process of two-dimensional films because it is self-limiting and stops as soon as a monolayer of graphene has been synthesized. Most importantly, a novel phase of metastable graphene was discovered that is characterized by permanent and simultaneous construction and deconstruction. The high quality and large area graphene flakes are characterized by angle-resolved photoemission, proving that they are indeed monolayer and cover the whole 1×1 cm Ni(111) substrate. These findings are of high relevance to the intensive search for reliable synthesis methods for large graphene flakes of controlled layer number.
  • Item
    Electric-field control of surface magnetic anisotropy: A density functional approach
    (Milton Park : Taylor & Francis, 2009) Zhang, Hongbin; Richter, Manuel; Koepernik, Klaus; Opahle, Ingo; Tasnádi, Ferenc; Eschrig, Helmut
    In a recent experiment, Weisheit et al (2007 Science 315 349) demonstrated that the coercivity of thin L10 FePt and FePd films can be modified by the external electric field in an electrochemical environment. Here, this observation is confirmed by density functional calculations for the intrinsic magnetic anisotropy. The origin of the effect is clarified by means of a general and simple method to simulate charged metal surfaces. It is predicted that the coercivity of thin CoPt films is much more susceptible to electric field than that of FePt films.
  • Item
    Tuning functional properties by plastic deformation
    (Milton Park : Taylor & Francis, 2009) Kwon, A.R.; Neu, V.; Matias, V.; Hänisch, J.; Hühne, R.; Freudenberger, J.; Holzapfel, B.; Schultz, L.; Fähler, S.
    It is well known that a variation of lattice constants can strongly influence the functional properties of materials. Lattice constants can be influenced by external forces; however, most experiments are limited to hydrostatic pressure or biaxial stress. Here, we present an experimental approach that imposes a large uniaxial strain on epitaxially grown films in order to tune their functional properties. A substrate made of a ductile metal alloy covered with a biaxially oriented MgO layer is used as a template for growth of epitaxial films. By applying an external plastic strain, we break the symmetry within the substrate plane compared to the as-deposited state. The consequences of 2% plastic strain are examined for an epitaxial hard magnetic Nd2Fe14B film and are found to result in an elliptical distortion of the in-plane anisotropy below the spin-reorientation temperature. Our approach is a versatile method to study the influence of large plastic strain on various materials, as the MgO(001) layer used is a common substrate for epitaxial growth.
  • Item
    Electronic structure and magnetic properties of the spin-1/2 Heisenberg system CuSe2O5
    (Milton Park : Taylor & Francis, 2009) Janson, O.; Schnelle, W.; Schmidt, M.; Prots, Yu; Drechsler, S.-L.; Filatov, S.K.; Rosner, H.
    A microscopic magnetic model for the spin-1/2 Heisenberg chain compound CuSe2O5 is developed based on the results of a joint experimental and theoretical study. Magnetic susceptibility and specific heat data give evidence for quasi-one-dimensional (1D) magnetism with leading antiferromagnetic (AFM) couplings and an AFM ordering temperature of 17 K. For microscopic insight, full-potential density functional theory (DFT) calculations within the local density approximation (LDA) were performed. Using the resulting band structure, a consistent set of transfer integrals for an effective one-band tight-binding model was obtained. Electronic correlations were treated on a mean-field level starting from LDA (LSDA+U method) and on a model level (Hubbard model). With excellent agreement between experiment and theory, we find that only two couplings in CuSe2O5 are relevant: the nearest-neighbour intra-chain interaction of 165 K and a non-frustrated inter-chain (IC) coupling of 20 K. From a comparison with structurally related systems (Sr2Cu(PO4)2, Bi2CuO4), general implications for a magnetic ordering in presence of IC frustration are made.
  • Item
    Introducing artificial length scales to tailor magnetic properties
    (Milton Park : Taylor & Francis, 2009) Fassbender, J.; Strache, T.; Liedke, M.O.; Markó, D.; Wintz, S.; Lenz, K.; Keller, A.; Facsko, S.; Mönch, I.; McCord, J.
    Magnetism is a collective phenomenon. Hence, a local variation on the nanoscale of material properties, which act on the magnetic properties, affects the overall magnetism in an intriguing way. Of particular importance are the length scales on which a material property changes. These might be related to the exchange length, the domain wall width, a typical roughness correlation length, or a length scale introduced by patterning of the material. Here we report on the influence of two artificially created length scales: (i) ion erosion templates that serve as a source of a predefined surface morphology (ripple structure) and hence allow for the investigation of roughness phenomena. It is demonstrated that the ripple wave length can be easily tuned over a wide range (25–175 nm) by varying the primary ion erosion energy. The effect of this ripple morphology on the induced uniaxial magnetic anisotropy in soft magnetic Permalloy films is studied. Only below a ripple wavelength threshold (≈60 nm) is a significant induced magnetic anisotropy found. Above this threshold the corrugated Permalloy film acts as a flat film. This cross-over is discussed in the frame of dipolar interactions giving rise to the induced anisotropies. (ii) Ion implantation through a lithographically defined mask, which is used for a magnetic property patterning on various length scales. The resulting magnetic properties are neither present in non-implanted nor in homogeneously implanted films. Here new insight is gained by the comparison of different stripe patterning widths ranging from 1 to 10 μm. In addition, the appearance of more complicated magnetic domain structures, i.e. spin-flop domain configurations and head-on domain walls, during hard axis magnetization reversal is demonstrated. In both cases the magnetic properties, the magnetization reversal process as well as the magnetic domain configurations depend sensitively on the artificially introduced length scale.
  • Item
    Domain wall asymmetries in Ni81Fe19/NiO: Proof of variable anisotropics in exchange bias systems
    (Milton Park : Taylor & Francis, 2009) McCord, Jeffrey; Schäfer, Rudolf
    Multiple changes in the internal structure of magnetic domain walls due to alterations of the interfacial coupling across the ferromagnetic/antiferromagnetic interface are reported for Ni81Fe19/NiO exchange coupled films. Depending on the antiferromagnetically induced anisotropy, three different types of domain walls are observed. Cross-tie domain wall structures of decreased vortex to anti-vortex spacing develop with the addition of a thin antiferromagnetic layer. For exchange biased samples strong asymmetries in domain wall structure occur for the ascending and descending branch of the magnetization loop. For the descending branch a symmetric 180° Néel wall develops, whereas a folded cross-tie domain wall structure forms during magnetization reversal along the ascending loop branch. The novel type of 'zig-zagged' cross-tie wall is characterized by cross-ties reaching differently into the surrounding domain areas. The wall alterations indicate the existence of bi-modal coupling strengths in exchange coupled systems, which is in accordance with models of exchange bias that assume pinned and unpinned spins at the ferromagnetic/antiferromagnetic interface.