Search Results

Now showing 1 - 10 of 68
Loading...
Thumbnail Image
Item

A hyperbranched dopamine-containing PEG-based polymer for the inhibition of α-synuclein fibrillation

2015, Breydo, Leonid, Newland, Ben, Zhang, Hong, Rosser, Anne, Werner, Carsten, Uversky, Vladimir N., Wang, Wenxin

Aggregation of α-synuclein is believed to play an important role in Parkinson's disease and in other neurodegenerative maladies. Small molecule inhibitors of this process are among the most promising drug candidates for neurodegenerative diseases. Dendrimers have also been studied for anti-fibrillation applications but they can be difficult and expensive to synthetize. Here we show that RAFT polymerization can be used to produce a hyperbranched polyethylene glycol structure via a one-pot reaction. This polymer included a dopamine moiety, a known inhibitor of α-synuclein fibril formation. Dopamine within the polymer structure was capable of aggregation inhibition, although not to the same degree as free dopamine. This result opens up new avenues for the use of controlled radical polymerizations as a means of preparing hyperbranched polymers for anti-fibrillation activity, but shows that the incorporation of functional groups from known small molecules within polymers may alter their biological activity.

Loading...
Thumbnail Image
Item

A customizable microfluidic platform for medium-throughput modeling of neuromuscular circuits

2019, Bellmann, Jessica, Goswami, Ruchi Y., Girardo, Salvatore, Rein, Nelly, Hosseinzadeh, Zohreh, Hicks, Michael R., Busskamp, Volker, Pyle, April D., Werner, Carsten, Sterneckert, Jared

Neuromuscular circuits (NMCs) are vital for voluntary movement, and effective models of NMCs are needed to understand the pathogenesis of, as well as to identify effective treatments for, multiple diseases, including Duchenne's muscular dystrophy and amyotrophic lateral sclerosis. Microfluidics are ideal for recapitulating the central and peripheral compartments of NMCs, but myotubes often detach before functional NMCs are formed. In addition, microfluidic systems are often limited to a single experimental unit, which significantly limits their application in disease modeling and drug discovery. Here, we developed a microfluidic platform (MFP) containing over 100 experimental units, making it suitable for medium-throughput applications. To overcome detachment, we incorporated a reactive polymer surface allowing customization of the environment to culture different cell types. Using this approach, we identified conditions that enable long-term co-culture of human motor neurons and myotubes differentiated from human induced pluripotent stem cells inside our MFP. Optogenetics demonstrated the formation of functional NMCs. Furthermore, we developed a novel application of the rabies tracing assay to efficiently identify NMCs in our MFP. Therefore, our MFP enables large-scale generation and quantification of functional NMCs for disease modeling and pharmacological drug targeting. © 2019 The Authors

Loading...
Thumbnail Image
Item

A modular in vitro flow model to analyse blood-surface interactions under physiological conditions

2021, Valtin, Juliane, Behrens, Stephan, Maitz, Manfred F., Schmieder, Florian, Sonntag, Frank, Werner, Carsten

Newly developed materials for blood-contacting devices need to undergo hemocompatibility testing to prove compliance with clinical requirements. However, many current in vitro models disregard the influence of flow conditions and blood exchange as it occurs in vivo. Here, we present a flow model which allows testing of blood-surface interactions under more physiological conditions. This modular platform consists of a triple-pump-chip and a microchannel-chip with a customizable surface. Flow conditions can be adjusted individually within the physiological range. A performance test with whole blood confirmed the hemocompatibility of our modular platform. Hemolysis was negligible, inflammation and hemostasis parameters were comparable to those detected in a previously established quasi-static whole blood screening chamber. The steady supply of fresh blood avoids secondary effects by nonphysiological accumulation of activation products. Experiments with three subsequently tested biomaterials showed results similar to literature and our own experience. The reported results suggest that our developed flow model allows the evaluation of blood-contacting materials under physiological flow conditions. By adjusting the occurring wall shear stress, the model can be adapted for selected test conditions.

Loading...
Thumbnail Image
Item

Intelligent H2S release coating for regulating vascular remodeling

2021, Lu, Bingyang, Han, Xiao, Zhao, Ansha, Luo, Dan, Maitz, Manfred F., Wang, Haohao, Yang, Ping, Huang, Nan

Coronary atherosclerotic lesions exhibit a low-pH chronic inflammatory response. Due to insufficient drug release control, drug-eluting stent intervention can lead to delayed endothelialization, advanced thrombosis, and unprecise treatment. In this study, hyaluronic acid and chitosan were used to prepare pH-responsive self-assembling films. The hydrogen sulfide (H2S) releasing aspirin derivative ACS14 was used as drug in the film. The film regulates the release of the drug adjusted to the microenvironment of the lesion, and the drug balances the vascular function by releasing the regulating gas H2S, which comparably to NO promotes the self-healing capacity of blood vessels. Drug releasing profiles of the films at different pH, and other biological effects on blood vessels were evaluated through blood compatibility, cellular, and implantation experiments. This novel method of self-assembled films which H2S in an amount, which is adjusted to the condition of the lesion provides a new concept for the treatment of cardiovascular diseases.

Loading...
Thumbnail Image
Item

4D Biofabrication of fibrous artificial nerve graft for neuron regeneration

2020, Apsite, Indra, Constante, Gissela, Dulle, Martin, Vogt, Lena, Caspari, Anja, Boccaccini, Aldo R., Synytska, Alla, Salehi, Sahar, Ionov, Leonid

In this paper, we describe the application of the 4D biofabrication approach for the fabrication of artificial nerve graft. Bilayer scaffolds consisting of uniaxially aligned polycaprolactone-poly(glycerol sebacate) (PCL-PGS) and randomly aligned methacrylated hyaluronic acid (HA-MA) fibers were fabricated using electrospinning and further used for the culture of PC-12 neuron cells. Tubular structures form instantly after immersion of fibrous bilayer in an aqueous buffer and the diameter of obtained tubes can be controlled by changing bilayer parameters such as the thickness of each layer, overall bilayer thickness, and medium counterion concentration. Designed scaffolds showed a self-folded scroll-like structure with high stability after four weeks of real-time degradation. The significance of this research is in the fabrication of tuneable tubular nerve guide conduits that can simplify the current existing clinical treatment of neural injuries. © 2020 The Author(s). Published by IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Probing carbonyl-water hydrogen-bond interactions in thin polyoxazoline brushes

2016, Kroning, Annika, Furchner, Andreas, Adam, Stefan, Uhlmann, Petra, Hinrichs, Karsten

Temperature-responsive oxazoline-based polymer brushes have gained increased attention as biocompatible surfaces. In aqueous environment, they can be tuned between hydrophilic and hydrophobic behavior triggered by a temperature stimulus. This transition is connected with changes in molecule–solvent interactions and results in a switching of the brushes between swollen and collapsed states. This work studies the temperature-dependent interactions between poly(2-oxazoline) brushes and water. In detail, thermoresponsive poly(2-cyclopropyl-2-oxazoline), nonresponsive hydrophilic poly(2-methyl-2-oxazoline), as well as a copolymer of the two were investigated with in situ infrared ellipsometry. Focus was put on interactions of the brushes' carbonyl groups with water molecules. Different polymer–water interactions could be observed and assigned to hydrogen bonding between C=O groups and water molecules. The switching behavior of the brushes in the range of 20–45 °C was identified by frequency shifts and intensity changes of the amide I band.

Loading...
Thumbnail Image
Item

Cruciate Ligament Cell Sheets Can Be Rapidly Produced on Thermoresponsive poly(glycidyl ether) Coating and Successfully Used for Colonization of Embroidered Scaffolds

2021, Zahn, Ingrid, Stöbener, Daniel David, Weinhart, Marie, Gögele, Clemens, Breier, Annette, Hahn, Judith, Schröpfer, Michaela, Meyer, Michael, Schulze-Tanzil, Gundula

Anterior cruciate ligament (ACL) cell sheets combined with biomechanically competent scaffolds might facilitate ACL tissue engineering. Since thermoresponsive polymers allow a rapid enzyme-free detachment of cell sheets, we evaluated the applicability of a thermoresponsive poly(glycidyl ether) (PGE) coating for cruciate ligamentocyte sheet formation and its influence on ligamentocyte phenotype during sheet-mediated colonization of embroidered scaffolds. Ligamentocytes were seeded on surfaces either coated with PGE or without coating. Detached ligamentocyte sheets were cultured separately or wrapped around an embroidered scaffold made of polylactide acid (PLA) and poly(lactic-co-ε-caprolactone) (P(LA-CL)) threads functionalized by gas-phase fluorination and with collagen foam. Ligamentocyte viability, protein and gene expression were determined in sheets detached from surfaces with or without PGE coating, scaffolds seeded with sheets from PGE-coated plates and the respective monolayers. Stable and vital ligamentocyte sheets could be produced within 24 h with both surfaces, but more rapidly with PGE coating. PGE did not affect ligamentocyte phenotype. Scaffolds could be colonized with sheets associated with high cell survival, stable gene expression of ligament-related type I collagen, decorin, tenascin C and Mohawk after 14 d and extracellular matrix (ECM) deposition. PGE coating facilitates ligamentocyte sheet formation, and sheets colonizing the scaffolds displayed a ligament-related phenotype.

Loading...
Thumbnail Image
Item

PH-Responsive Biohybrid Carrier Material for Phenol Decontamination in Wastewater

2018, Pretscher, Martin, Pineda-Contreras, Beatriz A., Kaiser, Patrick, Reich, Steffen, Schöbel, Judith, Kuttner, Christian, Freitag, Ruth, Fery, Andreas, Schmalz, Holger, Agarwal, Seema

Smart polymers are a valuable platform to protect and control the activity of biological agents over a wide range of conditions, such as low pH, by proper encapsulation. Such conditions are present in olive oil mill wastewater with phenol as one of the most problematic constituents. We show that elastic and pH-responsive diblock copolymer fibers are a suitable carrier for Corynebacterium glutamicum, i.e., bacteria which are known for their ability to degrade phenol. Free C. glutamicum does not survive low pH conditions and fails to degrade phenol at low pH conditions. Our tea-bag like biohybrid system, where the pH-responsive diblock copolymer acts as a protecting outer shell for the embedded bacteria, allows phenol degradation even at low pH. Utilizing a two-step encapsulation process, planktonic cells were first encapsulated in poly(vinyl alcohol) to protect the bacteria against the organic solvents used in the second step employing coaxial electrospinning.

Loading...
Thumbnail Image
Item

Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model

2020, Hassan, Ghada, Forsman, Nina, Wan, Xing, Keurulainen, Leena, Bimbo, Luis M., Stehl, Susanne, van Charante, Frits, Chrubasik, Michael, Prakash, Aruna S., Johansson, Leena-Sisko, Mullen, Declan C., Johnston, Blair F., Zimmermann, Ralf, Werner, Carsten, Yli-Kauhaluoma, Jari, Coenye, Tom, Saris, Per E.J., Österberg, Monika, Moreira, Vânia M.

Bacterial biofilm infections incur massive costs on healthcare systems worldwide. Particularly worrisome are the infections associated with pressure ulcers and prosthetic, plastic, and reconstructive surgeries, where staphylococci are the major biofilm-forming pathogens. Non-leaching antimicrobial surfaces offer great promise for the design of bioactive coatings to be used in medical devices. However, the vast majority are cationic, which brings about undesirable toxicity. To circumvent this issue, we have developed antimicrobial nanocellulose films by direct functionalization of the surface with dehydroabietic acid derivatives. Our conceptually unique design generates non-leaching anionic surfaces that reduce the number of viable staphylococci in suspension, including drug-resistant Staphylococcus aureus, by an impressive 4-5 log units, upon contact. Moreover, the films clearly prevent bacterial colonization of the surface in a model mimicking the physiological environment in chronic wounds. Their activity is not hampered by high protein content, and they nurture fibroblast growth at the surface without causing significant hemolysis. In this work, we have generated nanocellulose films with indisputable antimicrobial activity demonstrated using state-of-the-art models that best depict an "in vivo scenario". Our approach is to use fully renewable polymers and find suitable alternatives to silver and cationic antimicrobials. © 2020 American Chemical Society.

Loading...
Thumbnail Image
Item

Durable endothelium-mimicking coating for surface bioengineering cardiovascular stents

2021, Ma, Qing, Shi, Xiuying, Tan, Xing, Wang, Rui, Xiong, Kaiqin, Maitz, Manfred F., Cui, Yuanyuan, Hu, Zhangmei, Tu, Qiufen, Huang, Nan, Shen, Li, Yang, Zhilu

Mimicking the nitric oxide (NO)-release and glycocalyx functions of native vascular endothelium on cardiovascular stent surfaces has been demonstrated to reduce in-stent restenosis (ISR) effectively. However, the practical performance of such an endothelium-mimicking surfaces is strictly limited by the durability of both NO release and bioactivity of the glycocalyx component. Herein, we present a mussel-inspired amine-bearing adhesive coating able to firmly tether the NO-generating species (e.g., Cu-DOTA coordination complex) and glycocalyx-like component (e.g., heparin) to create a durable endothelium-mimicking surface. The stent surface was firstly coated with polydopamine (pDA), followed by a surface chemical cross-link with polyamine (pAM) to form a durable pAMDA coating. Using a stepwise grafting strategy, Cu-DOTA and heparin were covalently grafted on the pAMDA-coated stent based on carbodiimide chemistry. Owing to both the high chemical stability of the pAMDA coating and covalent immobilization manner of the molecules, this proposed strategy could provide 62.4% bioactivity retention ratio of heparin, meanwhile persistently generate NO at physiological level from 5.9 ± 0.3 to 4.8 ± 0.4 × 10−10 mol cm−2 min−1 in 1 month. As a result, the functionalized vascular stent showed long-term endothelium-mimicking physiological effects on inhibition of thrombosis, inflammation, and intimal hyperplasia, enhanced re-endothelialization, and hence efficiently reduced ISR.