Search Results

Now showing 1 - 10 of 65
  • Item
    Cohesive detachment of an elastic pillar from a dissimilar substrate
    (Amsterdam : Elsevier, 2017) Fleck, Norman A.; Khaderi, Syed Nizamuddin; McMeeking, Robert M.; Arzt, Eduard
    The adhesion of micron-scale surfaces due to intermolecular interactions is a subject of in- tense interest spanning electronics, biomechanics and the application of soft materials to engineering devices. The degree of adhesion is sensitive to the diameter of micro-pillars in addition to the degree of elastic mismatch between pillar and substrate. Adhesion- strength-controlled detachment of an elastic circular cylinder from a dissimilar substrate is predicted using a Dugdale-type of analysis, with a cohesive zone of uniform tensile strength emanating from the interface corner. Detachment initiates when the opening of the cohesive zone attains a critical value, giving way to crack formation. When the cohe- sive zone size at crack initiation is small compared to the pillar diameter, the initiation of detachment can be expressed in terms of a critical value H c of the corner stress inten- sity. The estimated pull-offforce is somewhat sensitive to the choice of stick/slip boundary condition used on the cohesive zone, especially when the substrate material is much stiffer than the pillar material. The analysis can be used to predict the sensitivity of detachment force to the size of pillar and to the degree of elastic mismatch between pillar and sub- strate.
  • Item
    Switchable double-sided micropatterned adhesives for selective fixation and detachment
    (Amsterdam : Elsevier, 2019) Tinnemann, V.; Arzt, E.; Hensel, R.
    Micropatterned dry adhesives are promising candidates for the development of innovative adhesive platforms. Their reversible adhesion to various materials and surfaces has been reported over more than a decade. Switching between a strong and a weak adhesive state can be introduced by elastic buckling instabilities of the microstructure. In this work, we report on novel adhesive pads that exhibit micropatterned pillars on both sides. In double-sided PDMS micropatterns, the dimensions of the pillar structures were tuned by modulating the critical force for buckling during compressive loading. In this way, selective detachment of glass substrates was induced from one side of the pad. Our results indicate a significant switching efficiency of up to 83% between the strong and weak adhesive state. The new structures have high potential for emerging applications where temporary, double-sided fixations in combination with a predetermined detachment location are required. © 2018
  • Item
    Influence of water on tribolayer growth when lubricating steel with a fluorinated phosphonium dicyanamide ionic liquid
    (Basel : MDPI, 2019) Urtis, L.A.; Arcifa, A.; Zhang, P.; Du, J.; Fantauzzi, M.; Rauber, D.; Hempelmann, R.; Kraus, T.; Rossi, A.; Spencer, N.D.
    This work aims to elucidate the role of environmental humidity on the tribological behavior of steel surfaces lubricated with an ionic liquid comprised of a fluorinated phosphonium cation-tributyl-3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-octyl-phosphonium-and a dicyanamide anion (i.e. N(CN) 2 - ). Ball-on-disk tribotests were carried out at room temperature and at various levels of relative humidity (RH). Water was found to be required to promote the formation of a tribofilm over the contact area. The reaction layer exhibited a patchy morphology, which resembles that observed formed with conventional antiwear additives such as ZnDTP. A surface-chemical analysis of the tribofilm indicated that the tribofilm is composed of fluorides, oxides, and phosphates, pointing to a stress-induced degradation of the ions and corrosion of the sliding counterparts, which is enabled by the presence of water at the sliding interface. © 2019 by the authors.
  • Item
    Implementation of safe-by-design for nanomaterial development and safe innovation: Why we need a comprehensive approach
    (Basel : MDPI, 2018) Kraegeloh, Annette; Suarez-Merino, Blanca; Sluijter, Teun; Micheletti, Christian
    Manufactured nanomaterials (MNMs) are regarded as key components of innovations in various fields with high potential impact (e.g., energy generation and storage, electronics, photonics, diagnostics, theranostics, or drug delivery agents). Widespread use of MNMs raises concerns about their safety for humans and the environment, possibly limiting the impact of the nanotechnology-based innovation. The development of safe MNMs and nanoproducts has to result in a safe as well as functional material or product. Its safe use, and disposal at the end of its life cycle must be taken into account too. However, not all MNMs are similarly useful for all applications, some might bear a higher hazard potential than others, and use scenarios could lead to different exposure probabilities. To improve both safety and efficacy of nanotechnology, we think that a new proactive approach is necessary, based on pre-regulatory safety assessment and dialogue between stakeholders. On the basis of the work carried out in different European Union (EU) initiatives, developing and integrating MNMs Safe-by-Design and Trusted Environments (NANoREG, ProSafe, and NanoReg2), we present our point of view here. This concept, when fully developed, will allow for cost effective industrial innovation, and an exchange of key information between regulators and innovators. Regulators are thus informed about incoming innovations in good time, supporting a proactive regulatory action. The final goal is to contribute to the nanotechnology governance, having faster, cheaper, effective, and safer nano-products on the market.
  • Item
    Degradation analysis of tribologically loaded carbon nanotubes and carbon onions
    ([London] : Macmillan Publishers Limited, 2023) MacLucas, T.; Grützmacher, P.; Husmann, S.; Schmauch, J.; Keskin, S.; Suarez, S.; Presser, V.; Gachot, C.; Mücklich, F.
    Coating laser-patterned stainless-steel surfaces with carbon nanotubes (CNT) or carbon onions (CO) forms a tribological system that provides effective solid lubrication. Lubricant retention represents the fundamental mechanism of this system, as storing the particles inside the pattern prevents lubricant depletion in the contact area. In previous works, we used direct laser interference patterning to create line patterns with three different structural depths on AISI 304 stainless-steel platelets. Electrophoretic deposition subsequently coated the patterned surfaces with either CNTs or COs. Ball-on-disc friction tests were conducted to study the effect of structural depth on the solid lubricity of as-described surfaces. The results demonstrated that the shallower the textures, the lower the coefficient of friction, regardless of the applied particle type. This follow-up study examines the carbon nanoparticles’ structural degradation after friction testing on substrates patterned with different structural depths (0.24, 0.36, and 0.77 µm). Raman characterization shows severe degradation of both particle types and is used to classify their degradation state within Ferrari’s three-stage amorphization model. It was further shown that improving CNT lubricity translates into increasing particle defectivity. This is confirmed by electron microscopy, which shows decreasing crystalline domains. Compared to CNTs, CO-derived tribofilms show even more substantial structural degradation.
  • Item
    The influence of mean strain on the high-cycle fatigue of Nitinol with application to medical devices
    (Amsterdam : Elsevier, 2020) Cao, H.; Wu, M.H.; Zhou, F.; McMeeking, R.M.; Ritchie, R.O.
    One of the contentious issues associated with the high-cycle fatigue of Nitinol, a nominally equiatomic alloy of nickel and titanium, is the claim that increasing the applied mean strain can increase, or at least have no negative impact, on the fatigue lifetime, in conflict with reported behavior for the vast majority of other metallic materials. To investigate this in further detail, cyclic fatigue tests in bending were carried out on electropolished medical grade Nitinol at 37 °C for lives of up to 400 million cycles of strain involving various levels of the mean strain. A constant life model was developed through statistical analysis of the fatigue data, with 90% reliability at a confidence level of 95% on the effective fatigue strain. Our results show that the constant life diagram, a plot of strain amplitude versus mean strain, is monotonic yet nonlinear for lives of 400 million cycles of fatigue loading. Specifically, we find that in contradiction to the aforementioned claim, the strain amplitude limit at zero mean strain is 0.55% to achieve a 400 million cycle lifetime, at 90% reliability with 95% confidence; however, to achieve the same lifetime, reliability and confidence level in the presence of a 3% or more mean strain, the required strain amplitude limit is decreased by over a factor of three to 0.16%. Moreover, for mean strains from 3% to 7%, the strain amplitude limit that allows a 400 million cycle lifetime, at 90% reliability with 95% confidence, is ~ 0.16%, and essentially independent of mean strain. We conclude that the debatable claim that an increase in the applied mean strain can increase the fatigue life of Nitinol components is not supported by the current data.
  • Item
    Interlaboratory study assessing the analysis of supercapacitor electrochemistry data
    (New York, NY [u.a.] : Elsevier, 2023) Gittins, Jamie W.; Chen, Yuan; Arnold, Stefanie; Augustyn, Veronica; Balducci, Andrea; Brousse, Thierry; Frackowiak, Elzbieta; Gómez-Romero, Pedro; Kanwade, Archana; Köps, Lukas; Jha, Plawan Kumar; Lyu, Dongxun; Meo, Michele; Pandey, Deepak; Pang, Le; Presser, Volker; Rapisarda, Mario; Rueda-García, Daniel; Saeed, Saeed; Shirage, Parasharam M.; Ślesiński, Adam; Soavi, Francesca; Thomas, Jayan; Titirici, Maria-Magdalena; Wang, Hongxia; Xu, Zhen; Yu, Aiping; Zhang, Maiwen; Forse, Alexander C.
    Supercapacitors are fast-charging energy storage devices of great importance for developing robust and climate-friendly energy infrastructures for the future. Research in this field has seen rapid growth in recent years, therefore consistent reporting practices must be implemented to enable reliable comparison of device performance. Although several studies have highlighted the best practices for analysing and reporting data from such energy storage devices, there is yet to be an empirical study investigating whether researchers in the field are correctly implementing these recommendations, and which assesses the variation in reporting between different laboratories. Here we address this deficit by carrying out the first interlaboratory study of the analysis of supercapacitor electrochemistry data. We find that the use of incorrect formulae and researchers having different interpretations of key terminologies are major causes of variability in data reporting. Furthermore we highlight the more significant variation in reported results for electrochemical profiles showing non-ideal capacitive behaviour. From the insights gained through this study, we make additional recommendations to the community to help ensure consistent reporting of performance metrics moving forward.
  • Item
    Carbon onion / sulfur hybrid cathodes via inverse vulcanization for lithium sulfur batteries
    (Cambridge : Royal Society of Chemistry, 2017) Choudhury, Soumyadip; Srimuk, Pattarachai; Raju, Kumar; Tolosa, Aura; Fleischmann, Simon; Zeiger, Marco; Ozoemena, Kenneth I.; Borchardt, Lars; Presser, Volker
    A sulfur–1,3-diisopropenylbenzene copolymer was synthesized by ring-opening radical polymerization and hybridized with carbon onions at different loading levels. The carbon onion mixing was assisted by shear in a two-roll mill to capitalize on the softened state of the copolymer. The sulfur copolymer and the hybrids were thoroughly characterized in structure and chemical composition, and finally tested by electrochemical benchmarking. An enhancement of specific capacity was observed over 140 cycles at higher content of carbon onions in the hybrid electrodes. The copolymer hybrids demonstrate a maximum initial specific capacity of 1150 mA h gsulfur−1 (850 mA h gelectrode−1) and a low decay of capacity to reach 790 mA h gsulfur−1 (585 mA h gelectrode−1) after 140 charge/discharge cycles. All carbon onion/sulfur copolymer hybrid electrodes yielded high chemical stability, stable electrochemical performance superior to conventional melt-infiltrated reference samples having similar sulfur and carbon onion content. The amount of carbon onions embedded in the sulfur copolymer has a strong influence on the specific capacity, as they effectively stabilize the sulfur copolymer and sterically hinder the recombination of sulfur species to the S8 configuration.
  • Item
    Microgravity Removes Reaction Limits from Nonpolar Nanoparticle Agglomeration
    (Weinheim : Wiley-VCH, 2022) Pyttlik, Andrea; Kuttich, Björn; Kraus, Tobias
    Gravity can affect the agglomeration of nanoparticles by changing convection and sedimentation. The temperature-induced agglomeration of hexadecanethiol-capped gold nanoparticles in microgravity (µ g) is studied at the ZARM (Center of Applied Space Technology and Microgravity) drop tower and compared to their agglomeration on the ground (1 g). Nonpolar nanoparticles with a hydrodynamic diameter of 13 nm are dispersed in tetradecane, rapidly cooled from 70 to 10 °C to induce agglomeration, and observed by dynamic light scattering at a time resolution of 1 s. The mean hydrodynamic diameters of the agglomerates formed after 8 s in microgravity are 3 times (for low initial concentrations) to 5 times (at high initial concentrations) larger than on the ground. The observations are consistent with an agglomeration process that is closer to the reaction limit on thground and closer to the diffusion limit in microgravity.
  • Item
    Microenvironments designed to support growth and function of neuronal cells
    (Lausanne : Frontiers Media, 2018) Farrukh, Aleeza; Zhao, Shifang; del Campo, Aránzazu
    Strategies for neural tissue repair heavily depend on our ability to temporally reconstruct the natural cellular microenvironment of neural cells. Biomaterials play a fundamental role in this context, as they provide the mechanical support for cells to attach and migrate to the injury site, as well as fundamental signals for differentiation. This review describes how different cellular processes (attachment, proliferation, and (directional) migration and differentiation) have been supported by different material parameters, in vitro and in vivo. Although incipient guidelines for biomaterial design become visible, literature in the field remains rather phenomenological. As in other fields of tissue regeneration, progress will depend on more systematic studies on cell-materials response, better understanding on how cells behave and understand signals in their natural milieu from neurobiology studies, and the translation of this knowledge into engineered microenvironments for clinical use.