Search Results

Now showing 1 - 10 of 364
  • Item
    Results and recommendations from an intercomparison of six Hygroscopicity-TDMA systems
    (München : European Geopyhsical Union, 2011) Massling, A.; Niedermeier, N.; Hennig, T.; Fors, E.O.; Swietlicki, E.; Ehn, M.; Hämeri, K.; Villani, P.; Laj, P.; Good, N.; McFiggans, G.; Wiedensohler, A.
    The performance of six custom-built Hygrocopicity-Tandem Differential Mobility Analyser (H-TDMA) systems was investigated in the frame of an international calibration and intercomparison workshop held in Leipzig, February 2006. The goal of the workshop was to harmonise H-TDMA measurements and develop recommendations for atmospheric measurements and their data evaluation. The H-TDMA systems were compared in terms of the sizing of dry particles, relative humidity (RH) uncertainty, and consistency in determination of number fractions of different hygroscopic particle groups. The experiments were performed in an air-conditioned laboratory using ammonium sulphate particles or an external mixture of ammonium sulphate and soot particles. The sizing of dry particles of the six H-TDMA systems was within 0.2 to 4.2% of the selected particle diameter depending on investigated size and individual system. Measurements of ammonium sulphate aerosol found deviations equivalent to 4.5% RH from the set point of 90% RH compared to results from previous experiments in the literature. Evaluation of the number fraction of particles within the clearly separated growth factor modes of a laboratory generated externally mixed aerosol was done. The data from the H-TDMAs was analysed with a single fitting routine to investigate differences caused by the different data evaluation procedures used for each H-TDMA. The differences between the H-TDMAs were reduced from +12/−13% to +8/−6% when the same analysis routine was applied. We conclude that a common data evaluation procedure to determine number fractions of externally mixed aerosols will improve the comparability of H-TDMA measurements. It is recommended to ensure proper calibration of all flow, temperature and RH sensors in the systems. It is most important to thermally insulate the aerosol humidification unit and the second DMA and to monitor these temperatures to an accuracy of 0.2 °C. For the correct determination of external mixtures, it is necessary to take into account size-dependent losses due to diffusion in the plumbing between the DMAs and in the aerosol humidification unit.
  • Item
    Cloud radar with hybrid mode towards estimation of shape and orientation of ice crystals
    (München : European Geopyhsical Union, 2016) Myagkov, A.; Seifert, P.; Bauer-Pfundstein, M.; Wandinger, U.
    This paper is devoted to the experimental quantitative characterization of the shape and orientation distribution of ice particles in clouds. The characterization is based on measured and modeled elevation dependencies of the polarimetric parameters differential reflectivity and correlation coefficient. The polarimetric data are obtained using a newly developed 35 GHz cloud radar MIRA-35 with hybrid polarimetric configuration and scanning capabilities. The full procedure chain of the technical implementation and the realization of the setup of the hybrid-mode cloud radar for the shape determination are presented. This includes the description of phase adjustments in the transmitting paths, the introduction of the general data processing scheme, correction of the data for the differences of amplifications and electrical path lengths in the transmitting and receiving channels, the rotation of the polarization basis by 45°, the correction of antenna effects on polarimetric measurements, the determination of spectral polarimetric variables, and the formulation of a scheme to increase the signal-to-noise ratio. Modeling of the polarimetric variables is based on existing back-scattering models assuming the spheroidal representation of cloud scatterers. The parameters retrieved from the model are polarizability ratio and degree of orientation, which can be assigned to certain particle orientations and shapes. The developed algorithm is applied to a measurement of the hybrid-mode cloud radar taken on 20 October 2014 in Cabauw, the Netherlands, in the framework of the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign. The case study shows the retrieved polarizability ratio and degree of orientation of ice particles for a cloud system of three cloud layers at different heights. Retrieved polarizability ratios are 0.43, 0.85, and 1.5 which correspond to oblate, quasi-spherical, and columnar ice particles, respectively. It is shown that the polarizability ratio is useful for the detection of aggregation/riming processes. The orientation of oblate and prolate particles is estimated to be close to horizontal while quasi-spherical particles were found to be more randomly oriented.
  • Item
    Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer
    (München : European Geopyhsical Union, 2011) Müller, T.; Laborde, M.; Kassell, G.; Wiedensohler, A.
    Integrating nephelometers are instruments that directly measure a value close to the light scattering coefficient of airborne particles. Different models of nephelometers have been used for decades for monitoring and research applications. Now, a series of nephelometers (Ecotech models M9003, Aurora 1000 and Aurora 3000) with newly designed light sources based on light emitting diodes are available. This article reports on the design of these integrating nephelometers and a comparison of the Aurora 3000 to another commercial instrument (TSI model 3563) that uses an incandescent lamp. Both instruments are three-wavelength, total and backscatter integrating nephelometers. We present a characterization of the new light source design of the Aurora 3000 and provide parameterizations for its angular sensitivity functions. These parameterizations facilitate to correct for measurement artefacts using Mie-theory. Furthermore, correction factors are provided as a function of the Ångström exponent. Comparison measurements against the TSI 3563 with laboratory generated white particles and ambient air are also shown and discussed. Both instruments agree well within the calibration uncertainties and detection limit for total scattering with differences less than 5 %. Differences for backscattering are higher by up to 11 %. Highest differences were found for the longest wavelengths, where the signal to noise ratio is lowest. Differences at the blue and green wavelengths are less than 4 % and 3 %, respectively, for both total and backscattering.
  • Item
    Near-surface profiles of aerosol number concentration and temperature over the Arctic Ocean
    (München : European Geopyhsical Union, 2011) Held, A.; Orsini, D.A.; Vaattovaara, P.; Tjernström, M.; Leck, C.
    Temperature and particle number concentration profiles were measured at small height intervals above open and frozen leads and snow surfaces in the central Arctic. The device used was a gradient pole designed to investigate potential particle sources over the central Arctic Ocean. The collected data were fitted according to basic logarithmic flux-profile relationships to calculate the sensible heat flux and particle deposition velocity. Independent measurements by the eddy covariance technique were conducted at the same location. General agreement was observed between the two methods when logarithmic profiles could be fitted to the gradient pole data. In general, snow surfaces behaved as weak particle sinks with a maximum deposition velocity vd = 1.3 mm s−1 measured with the gradient pole. The lead surface behaved as a weak particle source before freeze-up with an upward flux Fc = 5.7 × 104 particles m−2 s−1, and as a relatively strong heat source after freeze-up, with an upward maximum sensible heat flux H = 13.1 W m−2. Over the frozen lead, however, we were unable to resolve any significant aerosol profiles.
  • Item
    The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation
    (München : European Geopyhsical Union, 2016) Engelmann, Ronny; Kanitz, Thomas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Skupin, Annett; Wandinger, Ulla; Komppula, Mika; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Mattis, Ina; Linné, Holger; Ansmann, Albert
    The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24∕7 monitoring of the atmospheric state with PollyXT.
  • Item
    EARLINET Single Calculus Chain – overview on methodology and strategy
    (München : European Geopyhsical Union, 2015) D'Amico, Giuseppe; Amodeo, A.; Baars, H.; Binietoglou, I.; Freudenthaler, V.; Mattis, I.; Wandinger, U.; Pappalardo, G.
    In this paper we describe the EARLINET Single Calculus Chain (SCC), a tool for the automatic analysis of lidar measurements. The development of this tool started in the framework of EARLINET-ASOS (European Aerosol Research Lidar Network – Advanced Sustainable Observation System); it was extended within ACTRIS (Aerosol, Clouds and Trace gases Research InfraStructure Network), and it is continuing within ACTRIS-2. The main idea was to develop a data processing chain that allows all EARLINET stations to retrieve, in a fully automatic way, the aerosol backscatter and extinction profiles starting from the raw lidar data of the lidar systems they operate. The calculus subsystem of the SCC is composed of two modules: a pre-processor module which handles the raw lidar data and corrects them for instrumental effects and an optical processing module for the retrieval of aerosol optical products from the pre-processed data. All input parameters needed to perform the lidar analysis are stored in a database to keep track of all changes which may occur for any EARLINET lidar system over the time. The two calculus modules are coordinated and synchronized by an additional module (daemon) which makes the whole analysis process fully automatic. The end user can interact with the SCC via a user-friendly web interface. All SCC modules are developed using open-source and freely available software packages. The final products retrieved by the SCC fulfill all requirements of the EARLINET quality assurance programs on both instrumental and algorithm levels. Moreover, the manpower needed to provide aerosol optical products is greatly reduced and thus the near-real-time availability of lidar data is improved. The high-quality of the SCC products is proven by the good agreement between the SCC analysis, and the corresponding independent manual retrievals. Finally, the ability of the SCC to provide high-quality aerosol optical products is demonstrated for an EARLINET intense observation period.
  • Item
    Radiative budget and cloud radiative effect over the Atlantic from ship-based observations
    (München : European Geopyhsical Union, 2012) Kalisch, J.; Macke, A.
    The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system. An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand. Averaged over all cruise tracks, we obtain a total net (solar + thermal) radiative flux of 144 W m−2 that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is −33 W m−2. For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle. The ECHAM5 single column model provides a surface net cloud effect that is more cooling by 17 W m−2 compared to the radiation observations. This overestimation in solar cooling is mostly caused by the shortwave impact of convective clouds. The latter show a large overestimation in solar cooling of up to 114 W m−2. Mean cloud radiative effects of cirrus and stratus clouds were simulated close to the observations.
  • Item
    EARLINET Single Calculus Chain – technical – Part 1: Pre-processing of raw lidar data
    (München : European Geopyhsical Union, 2016) D'Amico, Giuseppe; Amodeo, Aldo; Mattis, Ina; Freudenthaler, Volker; Pappalardo, Gelsomina
    In this paper we describe an automatic tool for the pre-processing of aerosol lidar data called ELPP (EARLINET Lidar Pre-Processor). It is one of two calculus modules of the EARLINET Single Calculus Chain (SCC), the automatic tool for the analysis of EARLINET data. ELPP is an open source module that executes instrumental corrections and data handling of the raw lidar signals, making the lidar data ready to be processed by the optical retrieval algorithms. According to the specific lidar configuration, ELPP automatically performs dead-time correction, atmospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay correction. Moreover, the signal-to-noise ratio of the pre-processed signals can be improved by means of configurable time integration of the raw signals and/or spatial smoothing. ELPP delivers the statistical uncertainties of the final products by means of error propagation or Monte Carlo simulations. During the development of ELPP, particular attention has been payed to make the tool flexible enough to handle all lidar configurations currently used within the EARLINET community. Moreover, it has been designed in a modular way to allow an easy extension to lidar configurations not yet implemented. The primary goal of ELPP is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of ELPP. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. ELPP has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.
  • Item
    EARLINET instrument intercomparison campaigns: Overview on strategy and results
    (München : European Geopyhsical Union, 2016) Wandinger, Ulla; Freudenthaler, Volker; Baars, Holger; Amodeo, Aldo; Engelmann, Ronny; Mattis, Ina; Groß, Silke; Pappalardo, Gelsomina; Giunta, Aldo; D'Amico, Giuseppe; Chaikovsky, Anatoli; Osipenko, Fiodor; Slesar, Alexander; Nicolae, Doina; Belegante, Livio; Talianu, Camelia; Serikov, Ilya; Linné, Holger; Jansen, Friedhelm; Apituley, Arnoud; Wilson, Keith M.; de Graaf, Martin; Trickl, Thomas; Giehl, Helmut; Adam, Mariana; Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Sicard, Michaël; Tomás, Sergio; Lange, Diego; Kumar, Dhiraj; Pujadas, Manuel; Molero, Francisco; Fernández, Alfonso J.; Alados-Arboledas, Lucas; Bravo-Aranda, Juan Antonio; Navas-Guzmán, Francisco; Guerrero-Rascado, Juan Luis; Granados-Muñoz, María José; Preißler, Jana; Wagner, Frank; Gausa, Michael; Grigorov, Ivan; Stoyanov, Dimitar; Iarlori, Marco; Rizi, Vincenco; Spinelli, Nicola; Boselli, Antonella; Wang, Xuan; Feudo, Teresa Lo; Perrone, Maria Rita; De Tomas, Ferdinando; Burlizzi, Pasquale
    This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009. We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607 nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below ±2 %. Particle backscatter and extinction coefficients agree within ±2  ×  10−4 km−1 sr−1 and ± 0.01 km−1, respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future.
  • Item
    A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine
    (München : European Geopyhsical Union, 2008) Birmili, W.; Schepanski, K.; Ansmann, A.; Spindler, G.; Tegen, I.; Wehner, B.; Nowak, A.; Reimer, E.; Mattis, I.; Müller, K.; Brüggemann, E.; Gnauk, T.; Herrmann, H.; Wiedensohler, A.; Althausen, D.; Schladitz, A.; Tuch, T.; Löschau, G.
    On 24 March 2007, an extraordinary dust plume was observed in the Central European troposphere. Satellite observations revealed its origins in a dust storm in Southern Ukraine, where large amounts of soil were resuspended from dried-out farmlands at wind gusts up to 30 m s−1. Along the pathway of the plume, maximum particulate matter (PM10) mass concentrations between 200 and 1400 μg m−3 occurred in Slovakia, the Czech Republic, Poland, and Germany. Over Germany, the dust plume was characterised by a volume extinction coefficient up to 400 Mm−1 and a particle optical depth of 0.71 at wavelength 0.532 μm. In-situ size distribution measurements as well as the wavelength dependence of light extinction from lidar and Sun photometer measurements confirmed the presence of a coarse particle mode with diameters around 2–3 μm. Chemical particle analyses suggested a fraction of 75% crustal material in daily average PM10 and up to 85% in the coarser fraction PM10–2.5. Based on the particle characteristics as well as a lack of increased CO and CO2 levels, a significant impact of biomass burning was ruled out. The reasons for the high particle concentrations in the dust plume were twofold: First, dust was transported very rapidly into Central Europe in a boundary layer jet under dry conditions. Second, the dust plume was confined to a relatively stable boundary layer of 1.4–1.8 km height, and could therefore neither expand nor dilute efficiently. Our findings illustrate the capacity of combined in situ and remote sensing measurements to characterise large-scale dust plumes with a variety of aerosol parameters. Although such plumes from Southern Eurasia seem to occur rather infrequently in Central Europe, its unexpected features highlights the need to improve the description of dust emission, transport and transformation processes needs, particularly when facing the possible effects of further anthropogenic desertification and climate change.