Search Results

Now showing 1 - 10 of 7719
  • Item
    Methyl 5-chloro-2-hydr-oxy-3-(4-methoxyphenyl)-4,6-dimethylbenzoate
    (Chester : International Union of Crystallography, 2009) Adeel, M.; Ali, I.; Langer, P.; Villinger, A.
    In the title compound, C17H17ClO4, the dihedral angle between the mean planes of the two benzene rings is 65.92 (5)°. The methyl ester group lies within the ring plane [deviations of O atoms from the plane = -0.051 (2) and 0.151 (2) Å] due to an intra-molecular O - H⋯O hydrogen bond. In the crystal, molecules are held together by rather weak non-classical inter-molecular C - H⋯O hydrogen bonds, resulting in dimeric units about inversion centers, forming eight- and ten-membered ring systems as R22(8) and R2 2(10) motifs. © Adeel et al. 2009.
  • Item
    Ring-Closure Mechanisms Mediated by Laccase to Synthesize Phenothiazines, Phenoxazines, and Phenazines
    (Washington, DC : ACS Publications, 2020) Hahn, Veronika; Mikolasch, Annett; Weitemeyer, Josephine; Petters, Sebastian; Davids, Timo; Lalk, Michael; Lackmann, Jan-Wilm; Schauer, Frieder
    The green and environmentally friendly synthesis of highly valuable organic substances is one possibility for the utilization of laccases (EC 1.10.3.2). As reactants for the herein described syntheses, different o-substituted arylamines or arylthiols and 2,5-dihydroxybenzoic acid and its derivatives were used. In this way, the formation of phenothiazines, phenoxazines, and phenazines was achieved in aqueous solution mediated by the laccase of Pycnoporus cinnabarinus in the presence of oxygen. Two types of phenothiazines (3-hydroxy- and 3-oxo-phenothiazines) formed in one reaction assay were described for the first time. The cyclization reactions yielded C–N, C–S, or C–O bonds. The syntheses were investigated with regard to the substitution pattern of the reaction partners. Differences in C–S and C–N bond formations without cyclization are discussed.
  • Item
    Trend detection in river flow indices in Poland
    (Heidelberg : Springer, 2018) Piniewski, Mikołaj; Marcinkowski, Paweł; Kundzewicz, Zbigniew W.
    The issue of trend detection in long time series of river flow records is of vast theoretical interest and considerable practical relevance. Water management is based on the assumption of stationarity; hence, it is crucial to check whether taking this assumption is justified. The objective of this study is to analyse long-term trends in selected river flow indices in small- and medium-sized catchments with relatively unmodified flow regime (semi-natural catchments) in Poland. The examined indices describe annual and seasonal average conditions as well as annual extreme conditions—low and high flows. The special focus is on the spatial analysis of trends, carried out on a comprehensive, representative data set of flow gauges. The present paper is timely, as no spatially comprehensive studies (i.e. covering the entire Poland or its large parts) on trend detection in time series of river flow have been done in the recent 15 years or so. The results suggest that there is a strong random component in the river flow process, the changes are weak and the spatial pattern is complex. Yet, the results of trend detection in different indices of river flow in Poland show that there exists a spatial divide that seems to hold quite generally for various indices (annual, seasonal, as well as low and high flow). Decreases of river flow dominate in the northern part of the country and increases usually in the southern part. Stations in the central part show mostly ‘no trend’ results. However, the spatial gradient is apparent only for the data for the period 1981–2016 rather than for 1956–2016. It seems also that the magnitude of increases of river flow is generally lower than that of decreases.
  • Item
    [1-Dimethylsilyl-2-phenyl-3-(η5-tetramethylcyclopentadienyl) prop-1-en-1-ylκC1](n5-pentamethylcyclopentadienyl)- titanium(III)
    (Chester : International Union of Crystallography, 2009) Lamač, M.; Spannenberg, A.; Arndt, P.; Rosenthal, U.
    The title compound, [Ti(C10H15)(C20H 26Si)], was obtained from the reaction of [Ti{5: 1-C5Me4(CH2)}(5-C 5Me5)] with the alkynylsilane PhC2SiMe 2H. The complex crystallizes with two independent mol-ecules in the asymmetric unit, which differ in the conformation of the propenyl unit, resulting in their having opposite helicity. No inter-molecular inter-actions or inter-actions involving the Si- H bond are present. The observed geometrical parameters are unexceptional compared to known structures of the same type.
  • Item
    Synthesis and Characterization of Oxide Chloride Sr2VO3Cl, a Layered S = 1 Compound
    (Washington, DC : ACS Publications, 2023) Sannes, Johnny A.; Kizhake Malayil, Ranjith K.; Corredor, Laura T.; Wolter, Anja U. B.; Grafe, Hans-Joachim; Valldor, Martin
    The mixed-anion compound with composition Sr2VO3Cl has been synthesized for the first time, using the conventional high-temperature solid-state synthesis technique in a closed silica ampule under inert conditions. This compound belongs to the known Sr2TmO3Cl (Tm = Sc, Mn, Fe, Co, Ni) family, but with Tm = V. All homologues within this family can be described with the tetragonal space group P4/nmm (No. 129); from a Rietveld refinement of powder X-ray diffraction data on the Tm = V homologue, the unit cell parameters were determined to a = 3.95974(8) and c = 14.0660(4) Å, and the atomic parameters in the crystal structure could be estimated. The synthesized powder is black, implying that the compound is a semiconductor. The magnetic investigations suggest that Sr2VO3Cl is a paramagnet at high temperatures, exhibiting a μeff = 2.0 μB V-1 and antiferromagnetic (AFM) interactions between the magnetic vanadium spins (θCW = −50 K), in line with the V-O-V advantageous super-exchange paths in the V-O layers. Specific heat capacity studies indicate two small anomalies around 5 and 35 K, which however are not associated with long-range magnetic ordering. 35Cl ss-NMR investigations suggest a slow spin freezing below 4.2 K resulting in a glassy-like spin ground state.
  • Item
    Synthesis and crystal structure of a one-dimensional chain-like strontium(II) coordination polymer built of N-methyldiethanolamine and isobutyrate ligands
    (Chester : International Union of Crystallography, 2021) Seiss, Maximilian; Schmitz, Sebastian; Börner, Martin; Monakhov, Kirill Yu.
    The one-dimensional coordination polymer (I) [Sr(ib)2 (H2mda)]n (Hib = isobutyric acid, C4H8O2, and H2mda = N-methyldiethanolamine, C5H13NO2), namely, catena-poly[[(N-methyldiethanolamine-k3O, N, O')strontium(II)]-di-μ2- isobutyrato-K3O, O':O;K3O:O, O'], was prepared by the one-pot aerobic reaction of [Zr6O4 (OH)4 (ib)12 (H2O)].3Hib with Sr(NO3)2 and H2mda in the presence of MnCl2 and Et3N in acetonitrile. The use of MnCl2 is key to the isolation of I as high-quality colorless crystals in good yield. The molecular solid-state structure of I was determined by single-crystal X-ray diffraction. Compound I crystallizes in the monoclinic space group P21/c and shows a one-dimensional polymeric chain structure. Each monomeric unit of this coordination polymer consists of a central SrII ion in the NO8 coordination environment of two deprotonated ib- ligands and one fully protonated H2mda ligand. The C and O atoms of the H2mda ligand were refined as disordered over two sets of sites with site occupancies of 0.619 (3) and 0.381 (3). Compound I shows thermal stability up to 130°C in air. © 2021 International Union of Crystallography. All rights reserved.
  • Item
    2-hydroxyethylammonium iodide
    (Chester : International Union of Crystallography, 2014) Kohrt, C.; Spannenberg, A.; Werner, T.
    In the crystal structure of the title salt, C2H 8NO+·I-, N-H⋯O, N-H⋯I and O-H⋯I hydrogen bonds lead to the formation of layers staggered along the c axis.
  • Item
    Redetermination of EuScO3
    (Chester : International Union of Crystallography, 2009) Kahlenberg, V.; Maier, D.; Veličkov, B.
    Single crystals of europium(III) scandate(III), with ideal formula EuScO3, were grown from the melt using the micro-pulling-down method. The title compound crystallizes in an ortho-rhom-bic distorted perovskite-type structure, where Eu occupies the eightfold coordinated A sites (site symmetry m) and Sc resides on the centres of corner-sharing [ScO6] octa-hedra (B sites with site symmetry ). The structure of EuScO3 has been reported previously based on powder diffraction data [Liferovich & Mitchell (2004). J. Solid State Chem. 177, 2188-2197]. The results of the current redetermination based on single-crystal diffraction data shows an improvement in the precision of the structral and geometric parameters and reveals a defect-type structure. Site-occupancy refinements indicate an Eu deficiency on the A site coupled with O defects on one of the two O-atom positions. The crystallochemical formula of the investigated sample may thus be written as A(0.032Eu0.968)BScO2.952.
  • Item
    Optimizing the Geometry of Photoacoustically Active Gold Nanoparticles for Biomedical Imaging
    (Washington, DC : ACS, 2020) García-Álvarez, Rafaela; Chen, Lisa; Nedilko, Alexander; Sánchez-Iglesias, Ana; Rix, Anne; Lederle, Wiltrud; Pathak, Vertika; Lammers, Twan; von Plessen, Gero; Kostarelos, Kostas; Liz-Marzán, Luis M.; Kuehne, Alexander J.C.; Chigrin, Dmitry N.
    Photoacoustics is an upcoming modality for biomedical imaging, which promises minimal invasiveness at high penetration depths of several centimeters. For superior photoacoustic contrast, imaging probes with high photothermal conversion efficiency are required. Gold nanoparticles are among the best performing photoacoustic imaging probes. However, the geometry and size of the nanoparticles determine their photothermal efficiency. We present a systematic theoretical analysis to determine the optimum nanoparticle geometry with respect to photoacoustic efficiency in the near-infrared spectral range, for superior photoacoustic contrast. Theoretical predictions are illustrated by experimental results for two of the most promising nanoparticle geometries, namely, high aspect ratio gold nanorods and gold nanostars. Copyright © 2020 American Chemical Society.
  • Item
    Crystal structure of diethyl (E)-2-[(benzofuran-2-yl)methylidene]succinate
    (Chester : International Union of Crystallography, 2015) Schirmer, Marie-Luis; Spannenberg, Anke; Werner, Thomas
    The title compound, C17H18O5, was synthesized by a base-free catalytic Wittig reaction. The mol­ecule consists of a diethyl itaconate unit, which is connected via the C=C double bond to a benzo­furan moiety. The benzo­furan ring system (r.m.s. deviation = 0.007 Å) forms dihedral angles of 79.58 (4) and 12.12 (10)° with the mean planes through the cis and trans eth­oxy­carbonyl groups, respectively. An intra­molecular C-H...O hydrogen bond involving the O atom of the benzo­furan moiety is observed. In the crystal, mol­ecules are linked into ribbons running parallel to the b axis by C-H...O hydrogen bonds.