Search Results

Now showing 1 - 8 of 8
  • Item
    Magnetic anisotropy of endohedral lanthanide ions: paramagnetic NMR study of MSc2N@C80-Ih with M running through the whole 4f row
    (Cambridge : RSC, 2015) Zhang, Y.; Krylov, D.; Rosenkranz, M.; Schiemenz, S.; Popov, A. A.
    Paramagnetic and variable temperature 13C and 45Sc nuclear magnetic resonance studies are performed for nitride clusterfullerenes MSc2N@C80 with icosahedral Ih(7) carbon cage, where M runs through all lanthanides forming nitride clusters. The influence of the endohedral lanthanide ions on the NMR spectral pattern is carefully followed, and dramatic differences are found in peak positions and line widths. Thus, 13C lines broaden from 0.01–0.02 ppm in diamagnetic MSc2N@C80 molecules (M = La, Y, Lu) to several ppm in TbSc2N@C80 and DySc2N@C80. Direction of the paramagnetic shift depends on the shape of the 4f electron density in corresponding lanthanide ions. In TmSc2N@C80 and ErSc2N@C80 with prolate 4f-density of lanthanide ions, 13C signals are shifted down-field, whereas 45Sc peaks are shifted up-field versus diamagnetic values. In all other MSc2N@C80 molecules lanthanide ions have oblate-shaped 4f electron density, and the lanthanide-induced shift is negative for 13C and positive for 45Sc peaks. Analysis of the pseudocontact and contact contributions to chemical shifts revealed that the pseudocontact term dominates both in 13C and 45Sc NMR spectra, although contact shifts for 13C signals are also considerable. Point charge computations of the ligand field splitting are performed to explain experimental results, and showed reasonable agreement with experimental pseudocontact shifts. Nitrogen atom bearing large negative charge and located close to the lanthanide ion results in large magnetic anisotropy of lanthanide ions in nitride clusterfullerenes with quasi-uniaxial ligand field.
  • Item
    Magnetic flux-trapping of anisotropic-grown Y-Ba-Cu-O bulk superconductors during and after pulsed-field magnetizing processes
    (Milton Park : Taylor & Francis, 2014) Oka, T.; Yamada, Y.; Horiuchi, T.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Langer, M.
    The magnetic flux penetration into the melt-textured Y-Ba-Cu-O high temperature superconducting bulk magnets were precisely evaluated during and after the pulsed field magnetization processes operated at 30 K. The bulk magnets were carefully fabricated by the cold seeding method with use of a single and a pair of seed crystals composed of the Nd-Ba-Cu-O thin films. These seed crystals were put on the top surfaces of the precursors to let the large grains grow during the heat treatments. We observed the flux penetrations which occurred in the lower applied-field regions at around 3.1 T for the samples bearing the twin seeds than those of the single-seeded crystals at around 3.8 T. This means that the magnetic fluxes are capable of invading into the twin-seeded samples more easily than the single-seeds. It suggests that the anisotropic grain growths of parallel and normal to the rows of seed crystals affects the variations of Jc values with different distributions of the pinning centers, results in the preferential paths for the invading magnetic fluxes.
  • Item
    Strong anisotropy of the electron-phonon interaction in NbP probed by magnetoacoustic quantum oscillations
    (Woodbury, NY : Inst., 2020) Schindler, Clemens; Gorbunov, Denis; Zherlitsyn, Sergei; Galeski, Stanislaw; Schmidt, Marcus; Wosnitza, Jochen; Gooth, Johannes
    In this study, we report on the observation of de Haas-van Alphen-type quantum oscillations (QOs) in the ultrasound velocity of NbP as well as "giant QOs"in the ultrasound attenuation in pulsed magnetic fields. The difference in the QO amplitude for different acoustic modes reveals a strong anisotropy of the effective deformation potential, which we estimate to be as high as 9eV for certain parts of the Fermi surface. Furthermore, the natural filtering of QO frequencies and the tracing of the individual Landau levels to the quantum limit allows for a more detailed investigation of the Fermi surface of NbP, as was previously achieved by means of analyzing QOs observed in magnetization or electrical resistivity. © 2020 authors. Published by the American Physical Society.
  • Item
    Magnetically induced anisotropy of flux penetration into strong-pinning superconductor/ferromagnet bilayers
    (Bristol : Institute of Physics Publishing, 2019) Simmendinger, J.; Hanisch, J.; Bihler, M.; Ionescu, A.M.; Weigand, M.; Sieger, M.; Hühne, R.; Rijckaert, H.; Van Driessche, I.; Schütz, G.; Albrecht, J.
    We studied the impact of soft ferromagnetic permalloy (Py) on the shielding currents in a strong-pinning superconductor - YBa2Cu3O7-δ with Ba2Y(Nb/Ta)O6 nano-precipitates - by means of scanning transmission x-ray microscopy. Typically and in particular when in the thin film limit, superconductor/ferromagnet (SC/FM) bilayers exhibit isotropic properties of the flux line ensemble at all temperatures. However, in elements with small aspect ratio a significant anisotropy in flux penetration is observed. We explain this effect by local in-plane fields arising from anisotropic magnetic stray fields originated by the ferromagnet. This leads to direction-dependent motion of magnetic vortices inside the SC/FM bilayer. Our results demonstrate that small variations of the magnetic properties can have huge impact on the superconductor.
  • Item
    Magnetically induced reorientation of martensite variants in constrained epitaxial Ni-Mn-Ga films grown on MgO(001)
    (Milton Park : Taylor & Francis, 2008) Thomas, M.; Heczko, O.; Buschbeck, J.; Rößler, U.K.; McCord, J.; Scheerbaum, N.; Schultz, L.; Fähler, S.
    Magnetically induced reorientation (MIR) is observed in epitaxial orthorhombic Ni-Mn-Ga films. Ni-Mn-Ga films have been grown epitaxially on heated MgO(001) substrates in the cubic austenite state. The unit cell is rotated by 45° relative to the MgO cell. The growth, structure texture and anisotropic magnetic properties of these films are described. The crystallographic analysis of the martensitic transition reveals variant selection dominated by the substrate constraint. The austenite state has low magnetocrystalline anisotropy. In the martensitic state, the magnetization curves reveal an orthorhombic symmetry having three magnetically non-equivalent axes. The existence of MIR is deduced from the typical hysteresis within the first quadrant in magnetization curves and independently by texture measurement without and in the presence of a magnetic field probing micro structural changes. An analytical model is presented, which describes MIR in films with constrained overall extension by the additional degree of freedom of an orthorhombic structure compared to the tetragonal structure used in the standard model.
  • Item
    Tunable chirality of noncentrosymmetric magnetic Weyl semimetals in rare-earth carbides
    ([London] : Nature Publishing Group, 2022) Ray, Rajyavardhan; Sadhukhan, Banasree; Richter, Manuel; Facio, Jorge I.; van den Brink, Jeroen
    Even if Weyl semimetals are characterized by quasiparticles with well-defined chirality, exploiting this experimentally is severely hampered by Weyl lattice fermions coming in pairs with opposite chirality, typically causing the net chirality picked up by experimental probes to vanish. Here, we show this issue can be circumvented in a controlled manner when both time-reversal- and inversion symmetry are broken. To this end, we investigate chirality disbalance in the carbide family RMC2 (R a rare-earth and M a transition metal), showing several members to be Weyl semimetals. Using the noncentrosymmetric ferromagnet NdRhC2 as an illustrating example, we show that an odd number of Weyl nodes can be stabilized at its Fermi surface by properly tilting its magnetization. The chiral configuration endows a topological phase transition as the Weyl node transitions across the Fermi sheets, which triggers interesting chiral electromagnetic responses. Further, the tilt direction determines the sign of the resulting net chirality, opening up a simple route to control its sign and strength.
  • Item
    Coupling of chiralities in spin and physical spaces: The Möbius ring as a case study
    (College Park : American Physical Society, 2015) Pylypovskyi, Oleksandr V.; Kravchuk, Volodymyr P.; Sheka, Denis D.; Makarov, Denys; Schmidt, Oliver G.; Gaididei, Yuri
    We show that the interaction of the magnetic subsystem of a curved magnet with the magnet curvature results in the coupling of a topologically nontrivial magnetization pattern and topology of the object. The mechanism of this coupling is explored and illustrated by an example of a ferromagnetic Möbius ring, where a topologically induced domain wall appears as a ground state in the case of strong easy-normal anisotropy. For the Möbius geometry, the curvilinear form of the exchange interaction produces an additional effective Dzyaloshinskii-like term which leads to the coupling of the magnetochirality of the domain wall and chirality of the Möbius ring. Two types of domain walls are found, transversal and longitudinal, which are oriented across and along the Möbius ring, respectively. In both cases, the effect of magnetochirality symmetry breaking is established. The dependence of the ground state of the Möbius ring on its geometrical parameters and on the value of the easy-normal anisotropy is explored numerically.
  • Item
    Anisotropic fractal magnetic domain pattern in bulk Mn1.4PtSn
    (Woodbury, NY : Inst., 2020) Sukhanov, A.S.; Zuniga Cespedes, B.E.; Vir, P.; Cameron, A.S.; Heinemann, A.; Martin, N.; Chaboussant, G.; Kumar, V.; Milde, P.; Eng, L.M.; Felser, C.; Inosov, D.S.
    The tetragonal compound Mn1.4PtSn with D2d symmetry recently attracted attention as the first known material that hosts magnetic antiskyrmions, which differ from the skyrmions known so far by their internal structure. The latter have been found in a number of magnets with the chiral crystal structure. In previous works, the existence of antiskyrmions in Mn1.4PtSn was unambiguously demonstrated in real space by means of Lorentz transmission electron microscopy on thin-plate samples (∼100 nm thick). In the present study, we used small-angle neutron scattering and magnetic force microscopy to perform reciprocal- and real-space imaging of the magnetic texture of bulk Mn1.4PtSn single crystals at different temperatures and in applied magnetic field. We found that the magnetic texture in the bulk differs significantly from that of thin-plate samples. Instead of spin helices or an antiskyrmion lattice, we observe an anisotropic fractal magnetic pattern of closure domains in zero field above the spin-reorientation transition temperature, which transforms into a set of bubble domains in high field. Below the spin-reorientation transition temperature the strong in-plane anisotropy as well as the fractal self-affinity in zero field is gradually lost, while the formation of bubble domains in high field remains robust. The results of our study highlight the importance of dipole-dipole interactions in thin-plate samples for the stabilization of antiskyrmions and identify criteria which should guide the search for potential (anti)skyrmion host materials. Moreover, they provide consistent interpretations of the previously reported magnetotransport anomalies of the bulk crystals. © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society.