Search Results

Now showing 1 - 10 of 46
  • Item
    Optical, electrical and chemical properties of PEO:I2 complex composite films
    (Heidelberg [u.a.] : Springer, 2022) Telfah, Ahmad; Al-Bataineh, Qais M.; Tolstik, Elen; Ahmad, Ahmad A.; Alsaad, Ahmad M.; Ababneh, Riad; Tavares, Carlos J.; Hergenröder, Roland
    Synthesized PEO:I2 complex composite films with different I2 concentrations were deposited onto fused silica substrates using a dip-coating method. Incorporation of PEO films with I2 increases the electrical conductivity of the composite, reaching a maximum of 46 mS/cm for 7 wt% I2. The optical and optoelectronic properties of the complex composite films were studied using the transmittance and reflectance spectra in the UV-Vis region. The transmittance of PEO decreases with increasing I2 content. From this study, the optical bandgap energy decreases from 4.42 to 3.28 eV as I2 content increases from 0 to 7 wt%. In addition, the refractive index for PEO films are in the range of 1.66 and 2.00.1H NMR spectra of pure PEO film shows two major peaks at 3.224 ppm and 1.038 ppm, with different widths assigned to the mobile polymer chains in the amorphous phase, whereas the broad component is assigned to the more rigid molecules in the crystalline phase, respectively. By adding I2 to the PEO, both peaks (amorphous and crystal) are shifted to lower NMR frequencies indicating that I2 is acting as a Lewis acid, and PEO is acting as Lewis base. Hence, molecular iodine reacts favorably with PEO molecules through a charge transfer mechanism, and the formation of triiodide (I3-), the iodite (IO2-) anion, I 2· · · PEO and I2+···PEO complexes. PEO:I2 complex composite films are expected to be suitable for optical, electrical, and optoelectronic applications.
  • Item
    Synthesis, in Vitro Profiling, and in Vivo Evaluation of Benzohomoadamantane-Based Ureas for Visceral Pain: A New Indication for Soluble Epoxide Hydrolase Inhibitors
    (Washington, DC : ACS, 2022) Codony, Sandra; Entrena, José M.; Calvó-Tusell, Carla; Jora, Beatrice; González-Cano, Rafael; Osuna, Sílvia; Corpas, Rubén; Morisseau, Christophe; Pérez, Belén; Barniol-Xicota, Marta; Griñán-Ferré, Christian; Pérez, Concepción; Rodríguez-Franco, María Isabel; Martínez, Antón L.; Loza, M. Isabel; Pallàs, Mercè; Verhelst, Steven H. L.; Sanfeliu, Coral; Feixas, Ferran; Hammock, Bruce D.; Brea, José; Cobos, Enrique J.; Vázquez, Santiago
    The soluble epoxide hydrolase (sEH) has been suggested as a pharmacological target for the treatment of several diseases, including pain-related disorders. Herein, we report further medicinal chemistry around new benzohomoadamantane-based sEH inhibitors (sEHI) in order to improve the drug metabolism and pharmacokinetics properties of a previous hit. After an extensive in vitro screening cascade, molecular modeling, and in vivo pharmacokinetics studies, two candidates were evaluated in vivo in a murine model of capsaicin-induced allodynia. The two compounds showed an anti-allodynic effect in a dose-dependent manner. Moreover, the most potent compound presented robust analgesic efficacy in the cyclophosphamide-induced murine model of cystitis, a well-established model of visceral pain. Overall, these results suggest painful bladder syndrome as a new possible indication for sEHI, opening a new range of applications for them in the visceral pain field.
  • Item
    Multi-capillary column-ion mobility spectrometry (MCC-IMS) as a new method for the quantification of occupational exposure to sevoflurane in anaesthesia workplaces: an observational feasibility study
    (London : BioMed Central, 2015) Kunze, Nils; Weigel, Cathrin; Vautz, Wolfgang; Schwerdtfeger, Katrin; Jünger, Melanie; Quintel, Michael; Perl, Thorsten
    Background: Occupational exposure to sevoflurane has the potential to cause health damage in hospital personnel. Workplace contamination with the substance mostly is assessed by using photoacoustic infrared spectrometry with detection limits of 10 ppbv. Multi-capillary column-ion mobility spectrometry (MCC-IMS) could be an alternative technology for the quantification of sevoflurane in the room air and could be even more accurate because of potentially lower detection limits. The aim of this study was to test the hypothesis that MCC-IMS is able to detect and monitor very low concentrations of sevoflurane (<10 ppbv) and to evaluate the exposure of hospital personnel to sevoflurane during paediatric anaesthesia and in the post anaesthesia care unit (PACU). Methods: A MCC-IMS device was calibrated to several concentrations of sevoflurane and limits of detection (LOD) and quantification (LOQ) were calculated. Sevoflurane exposure of hospital personnel was measured at two anaesthesia workplaces and time-weighted average (TWA) values were calculated. Results: The LOD was 0.0068 ppbv and the LOQ was 0.0189 ppbv. During paediatric anaesthesia the mean sevoflurane concentration was 46.9 ppbv (8.0 - 314.7 ppbv) with TWA values between 5.8 and 45.7 ppbv. In the PACU the mean sevoflurane concentration was 27.9 ppbv (8.0 – 170.2 ppbv) and TWA values reached from 8.3 to 45.1 ppbv. Conclusions: MCC-IMS shows a significantly lower LOD and LOQ than comparable methods. It is a reliable technology for monitoring sevoflurane concentrations at anaesthesia workplaces and has a particular strength in quantifying low-level contaminations of sevoflurane. The exposure of the personnel working in these areas did not exceed recommended limits and therefore adverse health effects are unlikely.
  • Item
    Emission fluxes and atmospheric degradation of monoterpenes above a boreal forest: Field measurements and modelling
    (Milton Park : Taylor & Francis, 2001) Spanke, Jörg; Rannik, Üllar; Forkel, Renate; Nigge, Walter; Hoffman, Thorsten
    The contribution of monoterpenes to aerosol formation processes within and above forests is not well understood. This is also true for the particle formation events observed during the BIOFOR campaigns in Hyytiälä, Finland. Therefore, the diurnal variation of the concentrations of several biogenic volatile organic compounds (BVOCs) and selected oxidation products in the gas and particle phase were measured on selected days during the campaigns in Hyytiälä, Finland. α-pinene and Δ3-carene were found to represent the most important monoterpenes above the boreal forest. A clear vertical gradient of their concentrations was observed together with a change of the relative monoterpene composition with height. Based on concentration profile measurements of monoterpenes, their fluxes above the forest canopy were calculated using the gradient approach. Most of the time, the BVOC fluxes show a clear diurnal variation with a maximum around noon. The highest fluxes were observed for α-pinene with values up to 20 ng m−2 s−1 in summer time and almost 100 ng m−2 s−1 during the spring campaign. Furthermore, the main oxidation products from α-pinene, pinonaldehyde, and from β-pinene, nopinone, were detected in the atmosphere above the forest. In addition to these more volatile oxidation products, pinic and pinonic acid were identified in the particle phase in a concentration range between 1 and 4 ng m−3. Beside these direct measurement of known oxidation products, the chemical sink term in the flux calculations was used to estimate the amount of product formation of the major terpenes (α-pinene, β-pinene, Δ3-carene). A production rate of very low volatile oxidation products (e.g., multifunctional carboxylic) from ·OH- and O3-reaction of monoterpenes of about 1.3·104 molecules cm−3 s−1 was estimated for daylight conditions during summer time. Additionally, model calculations with the one-dimensional multilayer model CACHE were carried out to investigate the diurnal course of BVOC fluxes and chemical degradation of terpenes.
  • Item
    Protein O-mannosylation in the murine brain: Occurrence of Mono-O-Mannosyl glycans and identification of new substrates
    (San Francisco, CA : Public Library of Science, 2016) Bartels, Markus F.; Winterhalter, Patrick R.; Yu, Jin; Liu, Yan; Lommel, Mark; Möhrlen, Frank; Hu, Huaiyu; Feizi, Ten; Westerlind, Ulrika; Ruppert, Thomas; Strahl, Sabine
    Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-Man)AV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins.
  • Item
    Using SRM-MS to quantify nuclear protein abundance differences between adipose tissue depots of insulin-resistant mice
    (Rockville : American Society for Biochemistry and Molecular Biology, 2015) Ota, Asuka; Kovary, Kyle M.; Wu, Olivia H.; Ahrends, Robert; Shen, Wen-Jun; Costa, Maria J.; Feldman, Brian J.; Kraemer, Fredric B.; Teruel, Mary N.
    Insulin resistance (IR) underlies metabolic disease. Visceral, but not subcutaneous, white adipose tissue (WAT) has been linked to the development of IR, potentially due to differences in regulatory protein abundance. Here we investigate how protein levels are changed in IR in different WAT depots by developing a targeted proteomics approach to quantitatively compare the abundance of 42 nuclear proteins in subcutaneous and visceral WAT from a commonly used insulin-resistant mouse model, Lepr(db/db), and from C57BL/6J control mice. The most differentially expressed proteins were important in adipogenesis, as confirmed by siRNA-mediated depletion experiments, suggesting a defect in adipogenesis in visceral, but not subcutaneous, insulin-resistant WAT. Furthermore, differentiation of visceral, but not subcutaneous, insulin-resistant stromal vascular cells (SVCs) was impaired. In an in vitro approach to understand the cause of this impaired differentiation, we compared insulin-resistant visceral SVCs to preadipocyte cell culture models made insulin resistant by different stimuli. The insulin-resistant visceral SVC protein abundance profile correlated most with preadipocyte cell culture cells treated with both palmitate and TNFα. Together, our study introduces a method to simultaneously measure and quantitatively compare nuclear protein expression patterns in primary adipose tissue and adipocyte cell cultures, which we show can reveal relationships between differentiation and disease states of different adipocyte tissue types.
  • Item
    DeepsmirUD: Prediction of Regulatory Effects on microRNA Expression Mediated by Small Molecules Using Deep Learning
    (Basel : Molecular Diversity Preservation International, 2023) Sun, Jianfeng; Ru, Jinlong; Ramos-Mucci, Lorenzo; Qi, Fei; Chen, Zihao; Chen, Suyuan; Cribbs, Adam P.; Deng, Li; Wang, Xia
    Aberrant miRNA expression has been associated with a large number of human diseases. Therefore, targeting miRNAs to regulate their expression levels has become an important therapy against diseases that stem from the dysfunction of pathways regulated by miRNAs. In recent years, small molecules have demonstrated enormous potential as drugs to regulate miRNA expression (i.e., SM-miR). A clear understanding of the mechanism of action of small molecules on the upregulation and downregulation of miRNA expression allows precise diagnosis and treatment of oncogenic pathways. However, outside of a slow and costly process of experimental determination, computational strategies to assist this on an ad hoc basis have yet to be formulated. In this work, we developed, to the best of our knowledge, the first cross-platform prediction tool, DeepsmirUD, to infer small-molecule-mediated regulatory effects on miRNA expression (i.e., upregulation or downregulation). This method is powered by 12 cutting-edge deep-learning frameworks and achieved AUC values of 0.843/0.984 and AUCPR values of 0.866/0.992 on two independent test datasets. With a complementarily constructed network inference approach based on similarity, we report a significantly improved accuracy of 0.813 in determining the regulatory effects of nearly 650 associated SM-miR relations, each formed with either novel small molecule or novel miRNA. By further integrating miRNA–cancer relationships, we established a database of potential pharmaceutical drugs from 1343 small molecules for 107 cancer diseases to understand the drug mechanisms of action and offer novel insight into drug repositioning. Furthermore, we have employed DeepsmirUD to predict the regulatory effects of a large number of high-confidence associated SM-miR relations. Taken together, our method shows promise to accelerate the development of potential miRNA targets and small molecule drugs.
  • Item
    The influence of cadmium stress on the content of mineral nutrients and metal-binding proteins in arabidopsis halleri
    (Heidelberg : Springer, 2012) Przedpełska-Wąsowicz, Ewa; Polatajko, Aleksandra; Wierzbicka, Małgorzata
    We investigated the influence of cadmium stress on zinc hyperaccumulation, mineral nutrient uptake, and the content of metal-binding proteins in Arabidopsis halleri. The experiments were carried out using plants subjected to long-term cadmium exposure (40 days) in the concentrations of 45 and 225 μM Cd2+. Inductively coupled plasma-mass spectrometry, size exclusion chromatography coupled with plasma-mass spectrometry, and laser ablation inductively coupled plasma-mass spectrometry used for ablation of polyacylamide gels were employed to assess the content of investigated elements in plants as well as to identify metal-binding proteins. We found that A. halleri is able to translocate cadmium to the aerial parts in high amounts (translocation index >1). We showed that Zn content in plants decreased significantly with the increase of cadmium content in the growth medium. Different positive and negative correlations between Cd content and mineral nutrients were evidenced by our study. We identified more than ten low-molecular-weight (<100 kDa) Cd-binding proteins in Cd-treated plants. These proteins are unlikely to be phytochelatins or metallothioneins. We hypothesize that low-molecular-weight Cd-binding proteins can be involved in cadmium resistance in A. halleri.
  • Item
    In vitro effect of Withania somnifera, AYUSH-64, and remdesivir on the activity of CYP-450 enzymes: Implications for possible herb−drug interactions in the management of COVID-19
    (Lausanne : Frontiers Media, 2022) Kasarla, Siva Swapna; Borse, Swapnil P.; Kumar, Yashwant; Sharma, Neha; Dikshit, Madhu
    Ayurvedic medicines Withania somnifera Dunal (ashwagandha) and AYUSH-64 have been used for the prevention and management of COVID-19 in India. The present study explores the effect of Ashwagandha and AYUSH-64 on important human CYP enzymes (CYP3A4, CYP2C8, and CYP2D6) to assess their interaction with remdesivir, a drug used for COVID-19 management during the second wave. The study also implies possible herb−drug interactions as ashwagandha and AYUSH-64 are being used for managing various pathological conditions. Aqueous extracts of ashwagandha and AYUSH-64 were characterized using LC-MS/MS. A total of 11 and 24 phytoconstituents were identified putatively from ashwagandha and AYUSH-64 extracts, respectively. In addition, in silico studies revealed good ADME properties of most of the phytoconstituents of these herbal drugs and suggested that some of these might possess CYP-450 inhibitory activity. In vitro CYP-450 studies with human liver microsomes showed moderate inhibition of CYP3A4, 2C8, and 2D6 by remdesivir, while ashwagandha had no inhibitory effect alone or in combination with remdesivir. AYUSH-64 also exhibited a similar trend; however, a moderate inhibitory effect on CYP2C8 was noticed. Thus, ashwagandha seems to be safe to co-administer with the substrates of CYP3A4, CYP2C8, and CYP2D6. However, caution is warranted in prescribing AYUSH-64 along with CYP2C8 substrate drugs. Furthermore, preclinical and clinical PK studies would be helpful for their effective and safer use in the management of various ailments along with other drugs.
  • Item
    Infrared ellipsometric study of hydrogen-bonded long-chain thiolates on gold: Towards resolving structural details
    (Basel : MDPI, 2011) Tsankov, Dimiter; Philipova, Irena; Kostova, Kalina; Hinrichs, Karsten
    A set of newly synthesized aryl-substituted amides of 16-mercaptohexadecanoic acid (R = 4-OH; 3,5-di-OH) are self-assembled on Au(111) substrate. Self assembled monolayers (SAMs) formed by these molecules are studied by ellipsometry from infrared to visible spectral range. Best fit calculations based on the three-phase optical model are employed in order to determine the average tilt angle of the hydrocarbon chains. The data revealed that the SAMs reside in a crystalline-like environment as the long methylene chains predominantly exist in all-trans conformation. The calculated tilt angle of the hydrocarbon chain is decreased by approximately 12° in comparison with the one for the correspondent long-chain n-alkyl thiols. Strong hydrogen bonded networks were detected between the amide proton and the carbonyl oxygen as well as between hydroxyl groups in the end aryl substituents. The transition dipole moments of the C=O, N-H and O-H modes are oriented almost parallel to the gold surface.