Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

The second ACTRIS inter-comparison (2016) for Aerosol Chemical Speciation Monitors (ACSM): Calibration protocols and instrument performance evaluations

2019, Freney, Evelyn, Zhang, Yunjiang, Croteau, Philip, Amodeo, Tanguy, Williams, Leah, Truong, François, Petit, Jean-Eudes, Sciare, Jean, Sarda-Esteve, Roland, Bonnaire, Nicolas, Arumae, Tarvo, Aurela, Minna, Bougiatioti, Aikaterini, Mihalopoulos, Nikolaos, Coz, Esther, Artinano, Begoña, Crenn, Vincent, Elste, Thomas, Heikkinen, Liine, Poulain, Laurent, Wiedensohler, Alfred, Herrmann, Hartmut, Priestman, Max, Alastuey, Andres, Stavroulas, Iasonas, Tobler, Anna, Vasilescu, Jeni, Zanca, Nicola, Canagaratna, Manjula, Carbone, Claudio, Flentje, Harald, Green, David, Maasikmets, Marek, Marmureanu, Luminita, Cruz Minguillon, Maria, Prevot, Andre S.H., Gros, Valerie, Jayne, John, Favez, Olivier

This work describes results obtained from the 2016 Aerosol Chemical Speciation Monitor (ACSM) intercomparison exercise performed at the Aerosol Chemical Monitor Calibration Center (ACMCC, France). Fifteen quadrupole ACSMs (Q_ACSM) from the European Research Infrastructure for the observation of Aerosols, Clouds and Trace gases (ACTRIS) network were calibrated using a new procedure that acquires calibration data under the same operating conditions as those used during sampling and hence gets information representative of instrument performance. The new calibration procedure notably resulted in a decrease in the spread of the measured sulfate mass concentrations, improving the reproducibility of inorganic species measurements between ACSMs as well as the consistency with co-located independent instruments. Tested calibration procedures also allowed for the investigation of artifacts in individual instruments, such as the overestimation of m/z 44 from organic aerosol. This effect was quantified by the m/z (mass-to-charge) 44 to nitrate ratio measured during ammonium nitrate calibrations, with values ranging from 0.03 to 0.26, showing that it can be significant for some instruments. The fragmentation table correction previously proposed to account for this artifact was applied to the measurements acquired during this study. For some instruments (those with high artifacts), this fragmentation table adjustment led to an “overcorrection” of the f44 (m/z 44/Org) signal. This correction based on measurements made with pure NH4NO3, assumes that the magnitude of the artifact is independent of chemical composition. Using data acquired at different NH4NO3 mixing ratios (from solutions of NH4NO3 and (NH4)2SO4) we observe that the magnitude of the artifact varies as a function of composition. Here we applied an updated correction, dependent on the ambient NO3 mass fraction, which resulted in an improved agreement in organic signal among instruments. This work illustrates the benefits of integrating new calibration procedures and artifact corrections, but also highlights the benefits of these intercomparison exercises to continue to improve our knowledge of how these instruments operate, and assist us in interpreting atmospheric chemistry. © 2019, © 2019 Author(s). Published with license by Taylor & Francis Group, LLC.

Loading...
Thumbnail Image
Item

Engineering new limits to magnetostriction through metastability in iron-gallium alloys

2021, Meisenheimer, P.B., Steinhardt, R.A., Sung, S.H., Williams, L.D., Zhuang, S., Nowakowski, M.E., Novakov, S., Torunbalci, M.M., Prasad, B., Zollner, C. J., Wang, Z., Dawley, N.M., Schubert, J., Hunter, A.H., Manipatruni, S., Nikonov, D.E., Young, I.A., Chen, L.Q., Bokor, J., Bhave, S.A., Ramesh, R., Hu, J.-M., Kioupakis, E., Hovden, R., Schlom, D.G., Heron, J.T.

Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe1−xGax alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe1−xGax alloy to gallium compositions as high as x = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe1−xGax − [Pb(Mg1/3Nb2/3)O3]0.7−[PbTiO3]0.3 (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10−5 s m−1. When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit.

Loading...
Thumbnail Image
Item

Simultaneous lidar observations of a polar stratospheric cloud on the east and west sides of the Scandinavian mountains and microphysical box model simulations

2006, Blum, U., Khosrawi, F., Baumgarten, G., Stebel, K., Müller, R., Fricke, K.H.

The importance of polar stratospheric clouds (PSC) for polar ozone depletion is well established. Lidar experiments are well suited to observe and classify polar stratospheric clouds. On 5 January 2005 a PSC was observed simultaneously on the east and west sides of the Scandinavian mountains by ground-based lidars. This cloud was composed of liquid particles with a mixture of solid particles in the upper part of the cloud. Multi-colour measurements revealed that the liquid particles had a mode radius of r≈300 nm, a distribution width of σ≈1.04 and an altitude dependent number density of N≈2–20 cm−3. Simulations with a microphysical box model show that the cloud had formed about 20 h before observation. High HNO3 concentrations in the PSC of 40–50 weight percent were simulated in the altitude regions where the liquid particles were observed, while this concentration was reduced to about 10 weight percent in that part of the cloud where a mixture between solid and liquid particles was observed by the lidar. The model simulations also revealed a very narrow particle size distribution with values similar to the lidar observations. Below and above the cloud almost no HNO3 uptake was simulated. Although the PSC shows distinct wave signatures, no gravity wave activity was observed in the temperature profiles measured by the lidars and meteorological analyses support this observation. The observed cloud must have formed in a wave field above Iceland about 20 h prior to the measurements and the cloud wave pattern was advected by the background wind to Scandinavia. In this wave field above Iceland temperatures potentially dropped below the ice formation temperature, so that ice clouds may have formed which can act as condensation nuclei for the nitric acid trihydrate (NAT) particles observed at the cloud top above Esrange.