Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Operando diagnostic detection of interfacial oxygen ‘breathing’ of resistive random access memory by bulk-sensitive hard X-ray photoelectron spectroscopy

2019, Niu, Gang, Calka, Pauline, Huang, Peng, Sharath, Sankaramangalam Ulhas, Petzold, Stefan, Gloskovskii, Andrei, Fröhlich, Karol, Zhao, Yudi, Kan, Jinfeng, Schubert, Markus Andreas, Bärwolf, Florian, Ren, Wei, Ye, Zuo-Guang, Perez, Eduardo, Wenger, Christian, Alff, Lambert, Schroeder, Thomas

The HfO2-based resistive random access memory (RRAM) is one of the most promising candidates for non-volatile memory applications. The detection and examination of the dynamic behavior of oxygen ions/vacancies are crucial to deeply understand the microscopic physical nature of the resistive switching (RS) behavior. By using synchrotron radiation based, non-destructive and bulk-sensitive hard X-ray photoelectron spectroscopy (HAXPES), we demonstrate an operando diagnostic detection of the oxygen ‘breathing’ behavior at the oxide/metal interface, namely, oxygen migration between HfO2 and TiN during different RS periods. The results highlight the significance of oxide/metal interfaces in RRAM, even in filament-type devices. IMPACT STATEMENT: The oxygen ‘breathing’ behavior at the oxide/metal interface of filament-type resistive random access memory devices is operandoly detected using hard X-ray photoelectron spectroscopy as a diagnostic tool. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Loading...
Thumbnail Image
Item

Growth and applications of GeSn-related group-IV semiconductor materials

2015, Zaima, Shigeaki, Nakatsuka, Osamu, Taoka, Noriyuki, Kurosawa, Masashi, Takeuchi, Wakana, Sakashita, Mitsuo

We review the technology of Ge1−xSnx-related group-IV semiconductor materials for developing Si-based nanoelectronics. Ge1−xSnx-related materials provide novel engineering of the crystal growth, strain structure, and energy band alignment for realising various applications not only in electronics, but also in optoelectronics. We introduce our recent achievements in the crystal growth of Ge1−xSnx-related material thin films and the studies of the electronic properties of thin films, metals/Ge1−xSnx, and insulators/Ge1−xSnx interfaces. We also review recent studies related to the crystal growth, energy band engineering, and device applications of Ge1−xSnx-related materials, as well as the reported performances of electronic devices using Ge1−xSnx related materials.

Loading...
Thumbnail Image
Item

Modeling Photodetection at the Graphene/Ag2S Interface

2021, Spirito, Davide, Martín-García, Beatriz, Mišeikis, Vaidotas, Coletti, Camilla, Bonaccorso, Francesco, Krahne, Roman

Mixed-dimensional systems host interesting phenomena that involve electron and ion transport along or across the interface, with promising applications in optoelectronic and electrochemical devices. Herein, a heterosystem consisting of a graphene monolayer with a colloidal Ag2S nanocrystal film atop, in which both ions and electrons are involved in photoelectrical effects, is studied. An investigation of the transport at the interface in different configurations by using a phototransistor configuration with graphene as a charge-transport layer and semiconductor nanocrystals as a light-sensitive layer is performed. The key feature of charge transfer is investigated as a function of gate voltage, frequency, and incident light power. A simple analytical model of the photoresponse is developed, to gain information on the device operation, revealing that the nanocrystals transfer electrons to graphene in the dark, but the opposite process occurs upon illumination. A frequency-dependence analysis suggests a fractal interface between the two materials. This interface can be modified using solid-state electrochemical reactions, leading to the formation of metallic Ag particles, which affect the graphene properties by additional doping, while keeping the photoresponse. Overall, these results provide analytical tools and guidelines for the evaluation of coupled electron/ion transport in hybrid systems.

Loading...
Thumbnail Image
Item

Investigation of the copper gettering mechanism of oxide precipitates in silicon

2015, Kissinger, G., Kot, D., Klingsporn, M., Schubert, M.A., Sattler, A., Müller, T.

One of the reasons why the principal gettering mechanism of copper at oxide precipitates is not yet clarified is that it was not possible to identify the presence and measure the copper concentration in the vicinity of oxide precipitates. To overcome the problem we used a 14.5 nm thick thermal oxide layer as a model system for an oxide precipitate to localize the place where the copper is collected. We also analyzed a plate-like oxide precipitate by EDX and EELS and compared the results with the analysis carried out on the oxide layer. It is demonstrated that both the interface between the oxide precipitate being SiO2 and the silicon matrix and the interface between the thermal oxide and silicon consist of a 2–3 nm thick SiO layer. As the results of these experiments also show that copper segregates at the SiO interface layer of the thermal oxide it is concluded that gettering of copper by oxide precipitates is based on segregation of copper to the SiO interface layer.