Search Results

Now showing 1 - 10 of 19
  • Item
    Dynamic volume magnetic domain wall imaging in grain oriented electrical steel at power frequencies with accumulative high-frame rate neutron dark-field imaging
    (London : Nature Publishing Group, 2018) Harti, R.P.; Strobl, M.; Schäfer, R.; Kardjilov, N.; Tremsin, A.S.; Grünzweig, C.
    The mobility of magnetic domains forms the link between the basic physical properties of a magnetic material and its global characteristics such as permeability and saturation field. Most commonly, surface domain structure are studied using magneto-optical Kerr microscopy. The limited information depth of approx. 20 nanometers, however, allows only for an indirect interpretation of the internal volume domain structures. Here we show how accumulative high-frame rate dynamic neutron dark-field imaging is able for the first time to visualize the dynamic of the volume magnetic domain structures in grain oriented electrical steel laminations at power frequencies. In particular we studied the volume domain structures with a spatial resolution of ∼100 μm and successfully quantified domain sizes, wall velocities, domain annihilation and its duration and domain wall multiplication in real time recordings at power frequencies of 10, 25 and 50 Hz with ±262.5 A/m and ±525 A/m (peak to peak) applied field.
  • Item
    Recurrence Quantification Analysis at work: Quasi-periodicity based interpretation of gait force profiles for patients with Parkinson disease
    (London : Nature Publishing Group, 2018) Afsar, O.; Tirnakli, U.; Marwan, N.
    In this letter, making use of real gait force profiles of healthy and patient groups with Parkinson disease which have different disease severity in terms of Hoehn-Yahr stage, we calculate various heuristic complexity measures of the recurrence quantification analysis (RQA). Using this technique, we are able to evince that entropy, determinism and average diagonal line length (divergence) measures decrease (increases) with increasing disease severity. We also explain these tendencies using a theoretical model (based on the sine-circle map), so that we clearly relate them to decreasing degree of irrationality of the system as a course of gait's nature. This enables us to interpret the dynamics of normal/pathological gait and is expected to increase further applications of this technique on gait timings, gait force profiles and combinations of them with various physiological signals.
  • Item
    Detection of small bunches of ions using image charges
    (London : Nature Publishing Group, 2018) Räcke, Paul; Spemann, Daniel; Gerlach, Jürgen W.; Rauschenbach, Bernd; Meijer, Jan
    A concept for detection of charged particles in a single fly-by, e.g. within an ion optical system for deterministic implantation, is presented. It is based on recording the image charge signal of ions moving through a detector, comprising a set of cylindrical electrodes. This work describes theoretical and practical aspects of image charge detection (ICD) and detector design and its application in the context of real time ion detection. It is shown how false positive detections are excluded reliably, although the signal-to-noise ratio is far too low for time-domain analysis. This is achieved by applying a signal threshold detection scheme in the frequency domain, which - complemented by the development of specialised low-noise preamplifier electronics - will be the key to developing single ion image charge detection for deterministic implantation.
  • Item
    Intentional polarity conversion of AlN epitaxial layers by oxygen
    ([London] : Macmillan Publishers Limited, 2018) Stolyarchuk, N.; Markurt, T.; Courville, A.; March, K.; Zúñiga-Pérez, J.; Vennéguès, P.; Albrecht, M.
    Nitride materials (AlN, GaN, InN and their alloys) are commonly used in optoelectronics, high-power and high-frequency electronics. Polarity is the essential characteristic of these materials: when grown along c-direction, the films may exhibit either N- or metal-polar surface, which strongly influences their physical properties. The possibility to manipulate the polarity during growth allows to establish unique polarity in nitride thin films and nanowires for existing applications but also opens up new opportunities for device applications, e.g., in non-linear optics. In this work, we show that the polarity of an AlN film can intentionally be inverted by applying an oxygen plasma. We anneal an initially mixed-polar AlN film, grown on sapphire substrate by metal-organic vapor phase epitaxy (MOVPE), with an oxygen plasma in a molecular beam epitaxy (MBE) chamber; then, back in MOVPE, we deposit a 200 nm thick AlN film on top of the oxygen-treated surface. Analysis by high-resolution probe-corrected scanning transmission electron microscopy (STEM) imaging and electron energy-loss spectroscopy (EELS) evidences a switch of the N-polar domains to metal polarity. The polarity inversion is mediated through the formation of a thin AlxOyNz layer on the surface of the initial mixed polar film, induced by the oxygen annealing.
  • Item
    Coupling a single solid-state quantum emitter to an array of resonant plasmonic antennas
    (London : Nature Publishing Group, 2018) Pfeiffer, M.; Atkinson, P.; Rastelli, A.; Schmidt, O.G.; Giessen, H.; Lippitz, M.; Lindfors, K.
    Plasmon resonant arrays or meta-surfaces shape both the incoming optical field and the local density of states for emission processes. They provide large regions of enhanced emission from emitters and greater design flexibility than single nanoantennas. This makes them of great interest for engineering optical absorption and emission. Here we study the coupling of a single quantum emitter, a self-assembled semiconductor quantum dot, to a plasmonic meta-surface. We investigate the influence of the spectral properties of the nanoantennas and the position of the emitter in the unit cell of the structure. We observe a resonant enhancement due to emitter-array coupling in the far-field regime and find a clear difference from the interaction of an emitter with a single antenna.
  • Item
    Impact of the precursor chemistry and process conditions on the cell-to-cell variability in 1T-1R based HfO2 RRAM devices
    (London : Nature Publishing Group, 2018) Grossi, A.; Perez, E.; Zambelli, C.; Olivo, P.; Miranda, E.; Roelofs, R.; Woodruff, J.; Raisanen, P.; Li, W.; Givens, M.; Costina, I.; Schubert, M.A.; Wenger, C.
    The Resistive RAM (RRAM) technology is currently in a level of maturity that calls for its integration into CMOS compatible memory arrays. This CMOS integration requires a perfect understanding of the cells performance and reliability in relation to the deposition processes used for their manufacturing. In this paper, the impact of the precursor chemistries and process conditions on the performance of HfO2 based memristive cells is studied. An extensive characterization of HfO2 based 1T1R cells, a comparison of the cell-to-cell variability, and reliability study is performed. The cells’ behaviors during forming, set, and reset operations are monitored in order to relate their features to conductive filament properties and process-induced variability of the switching parameters. The modeling of the high resistance state (HRS) is performed by applying the Quantum-Point Contact model to assess the link between the deposition condition and the precursor chemistry with the resulting physical cells characteristics.
  • Item
    Cationic clustering influences the phase behaviour of ionic liquids
    (London : Nature Publishing Group, 2018) Niemann, Thomas; Zaitsau, Dimitri; Strate, Anne; Villinger, Alexander; Ludwig, Ralf
    “Unlike charges attract, but like charges repel”. This conventional wisdom has been recently challenged for ionic liquids. It could be shown that like-charged ions attract each other despite the powerful opposing electrostatic forces. In principle, cooperative hydrogen bonding between ions of like-charge can overcome the repulsive Coulomb interaction while pushing the limits of chemical bonding. The key challenge of this solvation phenomenon is to establish design principles for the efficient formation of clusters of like-charged ions in ionic liquids. This is realised here for a set of well-suited ionic liquids including the same hydrophobic anion but different cations all equipped with hydroxyethyl groups for possible H-bonding. The formation of H-bonded cationic clusters can be controlled by the delocalization of the positive charge on the cations. Strongly localized charge results in cation-anion interaction, delocalized charge leads to the formation of cationic clusters. For the first time we can show, that the cationic clusters influence the properties of ILs. ILs comprising these clusters can be supercooled and form glasses. Crystalline structures are obtained only, if the ILs are dominantly characterized by the attraction between opposite-charged ions resulting in conventional ion pairs. That may open a new path for controlling glass formation and crystallization. The glass temperatures and the phase transitions of the ILs are observed by differential scanning calorimetry (DSC) and infrared (IR) spectroscopy.
  • Item
    In-situ tensile testing of ZrCu-based metallic glass composites
    (London : Nature Publishing Group, 2018) Sun, H.C.; Ning, Z.L.; Wang, G.; Liang, W.Z.; Pauly, S.; Huang, Y.J.; Guo, S.; Xue, X.; Sun, J.F.
    ZrCu-based bulk metallic glass composites (BMGCs) are well known for their plastic deformability, superior to traditional metallic glasses (MGs), which is attributed to a unique dual-phases structure, namely, the glassy matrix and unstable B2 phase. In the present study, in-situ tensile testing is used to trace the deformation process of a ZrCu-based BMGC. Three deformation stages of the BMGC, i.e., the elastic-elastic stage, the elastic-plastic stage, and the plastic-plastic stage are identified. In the elastic-elastic and elastic-plastic stages, the yield strength and elastic limit are major influenced by the volume fraction of the B2 crystals. In the plastic-plastic stage, the B2 phase stimulates the formation of multiple shear bands and deflects the direction of shear bands by disturbing the stress field in front of the crack tip. The deformation-induced martensitic transformation of the metastable B2 phase contributes to the plasticity and work hardening of the composite. This study highlights the formation and propagation of multiple shear bands and reveals the interactions of shear bands with structural heterogeneities in situ. Especially, the blocking of shear bands by crystals and the martensitic transformation of the B2 phase are critical for the mechanistic deformation process and illustrate the function of the B2 phase in the present BMGCs.
  • Item
    Defined Geldrop Cultures Maintain Neural Precursor Cells
    (London : Nature Publishing Group, 2018) Vogler, Steffen; Prokoph, Silvana; Freudenberg, Uwe; Binner, Marcus; Tsurkan, Mikhail; Werner, Carsten; Kempermann, Gerd
    Distinct micro-environmental properties have been reported to be essential for maintenance of neural precursor cells (NPCs) within the adult brain. Due to high complexity and technical limitations, the natural niche can barely be studied systematically in vivo. By reconstituting selected environmental properties (adhesiveness, proteolytic degradability, and elasticity) in geldrop cultures, we show that NPCs can be maintained stably at high density over an extended period of time (up to 8 days). In both conventional systems, neurospheres and monolayer cultures, they would expand and (in the case of neurospheres) differentiate rapidly. Further, we report a critical dualism between matrix adhesiveness and degradability. Only if both features are functional NPCs stay proliferative. Lastly, Rho-associated protein kinase was identified as part of a pivotal intracellular signaling cascade controlling cell morphology in response to environmental cues inside geldrop cultures. Our findings demonstrate that simple manipulations of the microenvironment in vitro result in an important preservation of stemness features in the cultured precursor cells.
  • Item
    Role of disorder when upscaling magnetocaloric Ni-Co-Mn-Al Heusler alloys from thin films to ribbons
    (London : Nature Publishing Group, 2018) Weise, B.; Dutta, B.; Teichert, N.; Hütten, A.; Hickel, T.; Waske, A.
    Research in functional magnetic materials often employs thin films as model systems for finding new chemical compositions with promising properties. However, the scale-up of thin films towards bulk-like structures is challenging, since the material synthesis conditions are entirely different for thin films and e.g. rapid quenching methods. As one of the consequences, the type and degree of order in thin films and melt-spun ribbons are usually different, leading to different magnetic properties. In this work, using the example of magnetocaloric Ni-Co-Mn-Al melt-spun ribbons and thin films, we show that the excellent functional properties of the films can be reproduced also in ribbons, if an appropriate heat treatment is applied, that installs the right degree of order in the ribbons. We show that some chemical disorder is needed to get a pronounced and sharp martensitic transition. Increasing the order with annealing improves the magnetic properties only up to a point where selected types of disorder survive, which in turn compromise the magnetic properties. These findings allow us to understand the impact of the type and degree of disorder on the functional properties, paving the way for a faster transfer of combinatorial thin film research towards bulk-like materials for magnetic Heusler alloys.