Search Results

Now showing 1 - 10 of 322
  • Item
    Nanoscopic tip sensors fabricated by gas phase etching of optical glass fibers
    (Heidelberg : Springer, 2012) Bierlich, J.; Kobelke, J.; Brand, D.; Kirsch, K.; Dellith, J.; Bartelt, H.
    Silica-based fiber tips are used in a variety of spectroscopic, micro- or nano-scopic optical sensor applications and photonic micro-devices. The miniaturization of optical sensor systems and the technical implementation using optical fibers can provide new sensor designs with improved properties and functionality for new applications. The selective-etching of specifically doped silica fibers is a promising method in order to form complex photonic micro structures at the end or within fibers such as tips and cavities in various shapes useful for the all-fiber sensor and imaging applications. In the present study, we investigated the preparation of geometrically predefined, nanoscaled fiber tips by taking advantage of the dopant concentration profiles of highly doped step-index fibers. For this purpose, a gas phase etching process using hydrofluoric acid (HF) vapor was applied. The shaping of the fiber tips was based on very different etching rates as a result of the doping characteristics of specific optical fibers. Technological studies on the influence of the etching gas atmosphere on the temporal tip shaping and the final geometry were performed using undoped and doped silica fibers. The influence of the doping characteristics was investigated in phosphorus-, germanium-, fluorine- and boron-doped glass fibers. Narrow exposed as well as protected internal fiber tips in various shapes and tip radiuses down to less than 15 nm were achieved and characterized geometrically and topologically. For investigations into surface plasmon resonance effects, the fiber tips were coated with nanometer-sized silver layers by means of vapour deposition and finally subjected to an annealing treatment.
  • Item
    Germania and alumina dopant diffusion and viscous flow effects at preparation of doped optical fibers
    (Ostrava : VSB - Technical University of Ostrava and University of Zilina Faculty of Electrical Engineering, 2017) Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Unger, Sonja; Schwuchow, Anka; Elsmann, Tino; Dellith, Jan; Aichele, Claudia; Fatobene Ando, Ron; Bartelt, Hartmut
    We report on germania and alumina dopant profile shift effects at preparation of compact optical fibers using packaging methods (Stack-and-Draw method, Rod-in-Tube (RiT) technique). The sintering of package hollow volume by viscous flow results in a shift of the core-pitch ratio in all-solid microstructured fibers. The ratio is increased by about 5% in the case of a hexagonal package. The shift by diffusion effects of both dopants is simulated for typical slow speed drawing parameters. Thermodynamic approximations of surface dissociation of germania doped silica suggest the need of an adequate undoped silica barrier layer to prevent an undesired bubble formation at fiber drawing. In contrast, alumina doping does not estimate critical dissociation effects with vaporous aluminium oxide components. We report guide values of diffusion length of germania and alumina for the drawing process by kinetic approximation. The germania diffusion involves a small core enlargement, typically in the sub-micrometer scale. Though, the alumina diffusion enlarges it by a few micrometers. A drawn pure alumina preform core rod transforms to an amorphous aluminosilicate core with a molar alumina concentration of only about 50% and a non-gaussian concentration profile.
  • Item
    Characterisation of a novel composite SCCmec-SCCfus element in an emerging Staphylococcus aureus strain from the Arabian Gulf region
    (San Francisco : Public Library of Science, 2019) Senok, Abiola; Slickers, Peter; Hotzel, Helmut; Boswihi, Samar; Braun, Sascha D.; Gawlik, Darius; Müller, Elke; Nabi, Anju; Nassar, Rania; Nitschke, Hedda; Reißig, Annett; Ruppelt-Lorz, Antje; Mafofo, Joseph; Somili, Ali M.; Udo, Edet; Ehricht, Ralf; Monecke, Stefan
    Fusidic acid is a steroid antibiotic known since the 1960s. It is frequently used in topical preparations, i.e., ointments, for the treatment of skin and soft tissue infections caused by Staphylococcus aureus. There is an increasing number of methicillin-resistant S. aureus (MRSA) strains that harbour plasmid-borne fusB/far1 or fusC that is localised on SCC elements. In this study we examined a series of related CC30-MRSA isolates from the Arabian Gulf countries that presented with SCCmec elements and fusC, including a variant that—to the best of our knowledge—has not yet formally been described. It consisted of a class B mec complex and ccrA/B-4 genes. The fusidic acid resistance gene fusC was present, but contrary to the previously sequenced element of HDE288, it was not accompanied by tirS. This element was identified in CC30 MRSA from Kuwait, Saudi Arabia and the United Arab Emirates that usually also harbour the Panton-Valentin leukocidin (PVL) genes. It was also identified in CC8 and ST834 isolates. In addition, further CC30 MRSA strains with other SCCmec VI elements harbouring fusC were found to circulate in the Arabian Gulf region. It can be assumed that MRSA strains with SCCmec elements that include fusC have a selective advantage in both hospital and community settings warranting a review of the use of topical antibiotics and indicating the necessity of reducing over-the-counter sale of antibiotics, including fusidic acid, without prescription.Fusidic acid is a steroid antibiotic known since the 1960s. It is frequently used in topical preparations, i.e., ointments, for the treatment of skin and soft tissue infections caused by Staphylococcus aureus. There is an increasing number of methicillin-resistant S. aureus (MRSA) strains that harbour plasmid-borne fusB/far1 or fusC that is localised on SCC elements. In this study we examined a series of related CC30-MRSA isolates from the Arabian Gulf countries that presented with SCCmec elements and fusC, including a variant that—to the best of our knowledge—has not yet formally been described. It consisted of a class B mec complex and ccrA/B-4 genes. The fusidic acid resistance gene fusC was present, but contrary to the previously sequenced element of HDE288, it was not accompanied by tirS. This element was identified in CC30 MRSA from Kuwait, Saudi Arabia and the United Arab Emirates that usually also harbour the Panton-Valentin leukocidin (PVL) genes. It was also identified in CC8 and ST834 isolates. In addition, further CC30 MRSA strains with other SCCmec VI elements harbouring fusC were found to circulate in the Arabian Gulf region. It can be assumed that MRSA strains with SCCmec elements that include fusC have a selective advantage in both hospital and community settings warranting a review of the use of topical antibiotics and indicating the necessity of reducing over-the-counter sale of antibiotics, including fusidic acid, without prescription.
  • Item
    A manual and an automatic TERS based virus discrimination
    (Cambridge : RSC Publ., 2015) Olschewski, Konstanze; Kämmer, Evelyn; Stöckel, Stephan; Bocklitz, Thomas; Deckert-Gaudig, Tanja; Zell, Roland; Cialla-May, Dana; Weber, Karina; Deckert, Volker; Popp, Jürgen
    Rapid techniques for virus identification are more relevant today than ever. Conventional virus detection and identification strategies generally rest upon various microbiological methods and genomic approaches, which are not suited for the analysis of single virus particles. In contrast, the highly sensitive spectroscopic technique tip-enhanced Raman spectroscopy (TERS) allows the characterisation of biological nano-structures like virions on a single-particle level. In this study, the feasibility of TERS in combination with chemometrics to discriminate two pathogenic viruses, Varicella-zoster virus (VZV) and Porcine teschovirus (PTV), was investigated. In a first step, chemometric methods transformed the spectral data in such a way that a rapid visual discrimination of the two examined viruses was enabled. In a further step, these methods were utilised to perform an automatic quality rating of the measured spectra. Spectra that passed this test were eventually used to calculate a classification model, through which a successful discrimination of the two viral species based on TERS spectra of single virus particles was also realised with a classification accuracy of 91%.
  • Item
    Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: Evidences for light localization effect
    (New York, NY [u.a.] : Springer, 2012) Osminkina, L.A.; Gonchar, K.A.; Marshov, V.S.; Bunkov, K.V.; Petrov, D.V.; Golovan, L.A.; Talkenberg, F.; Sivakov, V.A.; Timoshenko, V.Y.
    We study the structure and optical properties of arrays of silicon nanowires (SiNWs) with a mean diameter of approximately 100 nm and length of about 1-25 μm formed on crystalline silicon (c-Si) substrates by using metal-assisted chemical etching in hydrofluoric acid solutions. In the middle infrared spectral region, the reflectance and transmittance of the formed SiNW arrays can be described in the framework of an effective medium with the effective refractive index of about 1.3 (porosity, approximately 75%), while a strong light scattering for wavelength of 0.3 ÷ 1 μm results in a decrease of the total reflectance of 1%-5%, which cannot be described in the effective medium approximation. The Raman scattering intensity under excitation at approximately 1 μm increases strongly in the sample with SiNWs in comparison with that in c-Si substrate. This effect is related to an increase of the light-matter interaction time due to the strong scattering of the excitation light in SiNW array. The prepared SiNWs are discussed as a kind of 'black silicon', which can be formed in a large scale and can be used for photonic applications as well as in molecular sensing.
  • Item
    Statistical Analysis of Scanning Fluorescence Correlation Spectroscopy Data Differentiates Free from Hindered Diffusion
    (Washington, DC : Soc., 2018-7-20) Schneider, Falk; Waithe, Dominic; Lagerholm, B. Christoffer; Shrestha, Dilip; Sezgin, Erdinc; Eggeling, Christian; Fritzsche, Marco
    Cells rely on versatile diffusion dynamics in their plasma membrane. Quantification of this often heterogeneous diffusion is essential to the understanding of cell regulation and function. Yet such measurements remain a major challenge in cell biology, usually due to low sampling throughput, a necessity for dedicated equipment, sophisticated fluorescent label strategies, and limited sensitivity. Here, we introduce a robust, broadly applicable statistical analysis pipeline for large scanning fluorescence correlation spectroscopy data sets, which uncovers the nanoscale heterogeneity of the plasma membrane in living cells by differentiating free from hindered diffusion modes of fluorescent lipid and protein analogues.
  • Item
    Liver Dysfunction and Phosphatidylinositol-3-Kinase Signalling in Early Sepsis: Experimental Studies in Rodent Models of Peritonitis
    (San Francisco, CA : Public Library of Science, 2012) Recknagel, P.; Gonnert, F.A.; Westermann, M.; Lambeck, S.; Lupp, A.; Rudiger, A.; Dyson, A.; Carré, J.E.; Kortgen, A.; Krafft, C.; Popp, J.; Sponholz, C.; Fuhrmann, V.; Hilger, I.; Claus, R.A.; Riedemann, N.C.; Wetzker, R.; Singer, M.; Trauner, M.; Bauer, M.
    Background: Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. Methods and Findings: In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). Conclusions: Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is necessary to extend these concepts into clinical practice. Please see later in the article for the Editors' Summary.
  • Item
    High-bit rate ultra-compact light routing with mode-selective on-chip nanoantennas
    (Washington D.C. : AAAS, 2017) Guo, Rui; Decker, Manuel; Setzpfandt, Frank; Gai, Xin; Choi, Duk-Yong; Kiselev, Roman; Chipouline, Arkadi; Staude, Isabelle; Pertsch, Thomas; Neshev, Dragomir N.
    Optical nanoantennas provide a promising pathway toward advanced manipulation of light waves, such as directional scattering, polarization conversion, and fluorescence enhancement. Although these functionalities were mainly studied for nanoantennas in free space or on homogeneous substrates, their integration with optical waveguides offers an important “wired” connection to other functional optical components. Taking advantage of the nanoantenna’s versatility and unrivaled compactness, their imprinting onto optical waveguides would enable a marked enhancement of design freedom and integration density for optical on-chip devices. Several examples of this concept have been demonstrated recently. However, the important question of whether nanoantennas can fulfill functionalities for high-bit rate signal transmission without degradation, which is the core purpose of many integrated optical applications, has not yet been experimentally investigated. We introduce and investigate directional, polarization-selective, and mode-selective on-chip nanoantennas integrated with a silicon rib waveguide. We demonstrate that these nanoantennas can separate optical signals with different polarizations by coupling the different polarizations of light vertically to different waveguide modes propagating into opposite directions. As the central result of this work, we show the suitability of this concept for the control of optical signals with ASK (amplitude-shift keying) NRZ (nonreturn to zero) modulation [10 Gigabit/s (Gb/s)] without significant bit error rate impairments. Our results demonstrate that waveguide-integrated nanoantennas have the potential to be used as ultra-compact polarization-demultiplexing on-chip devices for high–bit rate telecommunication applications.
  • Item
    Raman spectroscopy follows time-dependent changes in T lymphocytes isolated from spleen of endotoxemic mice
    (Rockville : American Association of Immunologists, 2019) Ramoji, Anuradha; Ryabchykov, Oleg; Galler, Kerstin; Tannert, Astrid; Markwart, Robby; Requardt, Robert Pascal; Rubio, Ignacio; Bauer, Michael; Bocklitz, Thomas W.; Popp, Jürgen; Neugebauer, Ute
    T lymphocytes (T cells) are highly specialized members of the adaptive immune system and hold the key to the understanding the hosts’ response toward invading pathogen or pathogen-associated molecular patterns such as LPS. In this study, noninvasive Raman spectroscopy is presented as a label-free method to follow LPS-induced changes in splenic T cells during acute and postacute inflammatory phases (1, 4, 10, and 30 d) with a special focus on CD4+ and CD8+ T cells of endotoxemic C57BL/6 mice. Raman spectral analysis reveals highest chemical differences between CD4+ and CD8+ T cells originating from the control and LPS-treated mice during acute inflammation, and the differences are visible up to 10 d after the LPS insult. In the postacute phase, CD4+ and CD8+ T cells from treated and untreated mice could not be differentiated anymore, suggesting that T cells largely regained their original status. In sum, the biological information obtained from Raman spectra agrees with immunological readouts demonstrating that Raman spectroscopy is a well-suited, label-free method for following splenic T cell activation in systemic inflammation from acute to postacute phases. The method can also be applied to directly study tissue sections as is demonstrated for spleen tissue one day after LPS insult.T lymphocytes (T cells) are highly specialized members of the adaptive immune system and hold the key to the understanding the hosts’ response toward invading pathogen or pathogen-associated molecular patterns such as LPS. In this study, noninvasive Raman spectroscopy is presented as a label-free method to follow LPS-induced changes in splenic T cells during acute and postacute inflammatory phases (1, 4, 10, and 30 d) with a special focus on CD4+ and CD8+ T cells of endotoxemic C57BL/6 mice. Raman spectral analysis reveals highest chemical differences between CD4+ and CD8+ T cells originating from the control and LPS-treated mice during acute inflammation, and the differences are visible up to 10 d after the LPS insult. In the postacute phase, CD4+ and CD8+ T cells from treated and untreated mice could not be differentiated anymore, suggesting that T cells largely regained their original status. In sum, the biological information obtained from Raman spectra agrees with immunological readouts demonstrating that Raman spectroscopy is a well-suited, label-free method for following splenic T cell activation in systemic inflammation from acute to postacute phases. The method can also be applied to directly study tissue sections as is demonstrated for spleen tissue one day after LPS insult.
  • Item
    In-vivo Raman spectroscopy: from basics to applications
    (Bellingham, Wash. : SPIE, 2018) Cordero, Eliana; Latka, Ines; Matthäus, Christian; Schie, Iwan W.; Popp, Jürgen
    For more than two decades, Raman spectroscopy has found widespread use in biological and medical applications. The instrumentation and the statistical evaluation procedures have matured, enabling the lengthy transition from ex-vivo demonstration to in-vivo examinations. This transition goes hand-in-hand with many technological developments and tightly bound requirements for a successful implementation in a clinical environment, which are often difficult to assess for novice scientists in the field. This review outlines the required instrumentation and instrumentation parameters, designs, and developments of fiber optic probes for the in-vivo applications in a clinical setting. It aims at providing an overview of contemporary technology and clinical trials and attempts to identify future developments necessary to bring the emerging technology to the clinical end users. A comprehensive overview of in-vivo applications of fiber optic Raman probes to characterize different tissue and disease types is also given.