Search Results

Now showing 1 - 3 of 3
  • Item
    Aerosol layer heights above Tajikistan during the CADEX campaign
    (Les Ulis : EDP Sciences, 2019) Hofer, Julian; Althausen, Dietrich; Abdullaev, Sabur F.; Nazarov, Bakhron I.; Makhmudov, Abduvosit N.; Baars, Holger; Engelmann, Ronny; Ansmann, Albert
    Mineral dust influences climate and weather by direct and indirect effects. Surrounded by dust sources, Central Asian countries are affected by atmospheric mineral dust on a regular basis. Climate change effects like glacier retreat and desertification are prevalent in Central Asia as well. Therefore, the role of dust in the climate system in Central Asia needs to be clarified and quantified. During the Central Asian Dust EXperiment (CADEX) first lidar observations in Tajikistan were conducted. Long-term vertically resolved aerosol measurements were performed with the multiwavelength polarization Raman lidar PollyXT from March 2015 to August 2016 in Dushanbe, Tajikistan. In this contribution, a climatology of the aerosol layer heights is presented, which was retrieved from the 18-month lidar measurements. Automatic detection based on backscatter coefficient thresholds were used to retrieve the aerosol layer heights and yield similar layer heights as manual layer height determination. The significant aerosol layer height has a maximum in summer and a minimum in winter. The highest layers occurred in spring, but in summer uppermost layer heights above 6 km AGL are frequent, too. © 2019 The Authors, published by EDP Sciences.
  • Item
    Assessment of Socio-Economic and Climate Change Impacts on Water Resources in Four European Lagoon Catchments
    (New York, NY : Springer, 2019) Stefanova, Anastassi; Hesse, Cornelia; Krysanova, Valentina; Volk, Martin
    This study demonstrates the importance of considering potential land use and management changes in climate impact research. By taking into account possible trends of economic development and environmental awareness, we assess effects of global warming on water availability and quality in the catchments of four European lagoons: Ria de Aveiro (Portugal), Mar Menor (Spain), Vistula Lagoon (Poland and Russia), and Tyligulskyi Liman (Ukraine). Different setups of the process-based soil and water integrated model (SWIM), representing one reference and four socio-economic scenarios for each study area: the “business as usual”, “crisis”, “managed horizons”, and “set-aside” scenarios are driven by sets of 15 climate scenarios for a reference (1971–2000) and near future (2011–2040) scenario period. Modeling results suggest a large spatial variability of potential impacts across the study areas, due to differences in the projected precipitation trends and the current environmental and socio-economic conditions. While climate change may reduce water and nutrients input to the Ria de Aveiro and Tyligulsyi Liman and increase water inflow to the Vistula Lagoon the socio-economic scenarios and their implications may balance out or reverse these trends. In the intensely managed Mar Menor catchment, climate change has no notable direct impact on water resources, but changes in land use and water management may certainly aggravate the current environmental problems. The great heterogeneity among results does not allow formulating adaptation or mitigation measures at pan-European level, as initially intended by this study. It rather implies the need of a regional approach in coastal zone management. © 2019, The Author(s).
  • Item
    Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming
    (San Diego, Calif. : Elsevier, 2020) Huber, Veronika; Krummenauer, Linda; Peña-Ortiz, Cristina; Lange, Stefan; Gasparrini, Antonio; Vicedo-Cabrera, Ana M.; Garcia-Herrera, Ricardo; Frieler, Katja
    Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993–2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49% (95%CI: 3.82–7.19) and 0.81% (95%CI: 0.72–0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 °C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45% (95%CI: −0.02–1.06) at 3 °C, 1.53% (95%CI: 0.96–2.06) at 4 °C, and 2.88% (95%CI: 1.60–4.10) at 5 °C, compared to today's warming level of 1 °C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 °C versus 1 °C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities. © 2020 The Authors