Search Results

Now showing 1 - 3 of 3
  • Item
    Few-cycle 65-µJ pulses at 11.4 µm for ultrafast nonlinear longwave-infrared spectroscopy
    (Washington, DC : Optical Society of America, OSA, 2022) Fuertjes, Pia; Bock, Martin; Grafenstein, Lorenz von; Ueberschaer, Dennis; Griebner, Uwe; Elsaesser, Thomas
    Low-energy excitations can provide insight into the basic ultrafast nonequilibrium dynamics of condensed matter. High-energy femtosecond pulses in the long-wavelength infrared are required to induce such processes, and can be generated in an optical parametric chirped pulse amplification (OPCPA) system comprising three GaSe stages. A femtosecond Cr:ZnS laser serves as the front-end, providing the seed for the 2.0-µm pump and the 2.4-µm signal pulses without nonlinear conversion processes. The OPCPA system is pumped at 2.05 µm by a picosecond Ho:YLF regenerative amplifier at a 1-kHz repetition rate. The recompressed idler pulses at 11.4 µm have a duration of 185 fs and an unprecedented energy of 65 µJ, corresponding to a pump-to-idler conversion efficiency of 1.2%. Nonlinear transmission experiments in the range of the L2 infrared band of liquid water demonstrate the potential of the pulses for nonlinear vibrational spectroscopy of liquids and solids.
  • Item
    Evidence for “dark charge” from photoluminescence measurements in wide InGaN quantum wells
    (Washington, DC : Optical Society of America, OSA, 2023) Bercha, A.; Trzeciakowski, W.; Muziol, G.; Tomm, J. W.; Suski, T.
    Wide (15-25 nm) InGaN/GaN quantum wells in LED structures were studied by time-resolved photoluminescence (PL) spectroscopy and compared with narrow (2.6 nm) wells in similar LED structures. Using below-barrier pulsed excitation in the microsecond range, we measured increase and decay of PL pulses. These pulses in wide wells at low-intensity excitation show very slow increase and fast decay. Moreover, the shape of the pulses changes when we vary the separation between them. None of these effects occurs for samples with narrow wells. The unusual properties of wide wells are attributed to the presence of “dark charge” i.e., electrons and holes in the ground states. Their wave functions are spatially separated and due to negligible overlap they do not contribute to emission. However, they screen the built-in field in the well very effectively so that excited states appear with significant overlap and give rise to PL. A simple model of recombination kinetics including “dark charge” explains the observations qualitatively.
  • Item
    Chirp-control of resonant high-order harmonic generation in indium ablation plumes driven by intense few-cycle laser pulses
    (Washington, DC : Optical Society of America, OSA, 2018) Abdelrahman, Z.; Khokhlova, M.A.; Walke, D.J.; Witting, T.; Zair, A.; Strelkov, V.V.; Marangos, J.P.; Tisch, J.W.G.
    We have studied high-order harmonic generation (HHG) in an indium ablation plume driven by intense few-cycle laser pulses centered at 775 nm as a function of the frequency chirp of the laser pulse. We found experimentally that resonant emission lines between 19.7 eV and 22.3 eV (close to the 13th and 15th harmonic of the laser) exhibit a strong, asymmetric chirp dependence, with pronounced intensity modulations. The chirp dependence is reproduced by our numerical time-dependent Schrödinger equation simulations of a resonant HHG by the model indium ion. As demonstrated with our separate simulations of HHG within the strong field approximation, the resonance can be understood in terms of the chirp-dependent HHG photon energy coinciding with the energy of an autoionizing state to ground state transition with high oscillator strength. This supports the validity of the general theory of resonant four-step HHG in the few-cycle limit.