Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

New Low-Melting Triply Charged Homoleptic Cr(III)-Based Ionic Liquids in Comparison to Their Singly Charged Heteroleptic Analogues

2021, Peppel, Tim, Köckerling, Martin

A series of new low-melting triply charged homoleptic Cr(III)-based ionic liquids of the general formula (RMIm)3[Cr(NCS)6] (R = methyl, ethyl, n-butyl, benzyl) is reported. Their syntheses and properties are described in comparison to their singly charged heteroleptic analogues of the general formula (RMIm)[Cr(NCS)4L2] (R = methyl, ethyl, n-butyl, benzyl; L = pyridine, γ-picoline). In total, sixteen new Reineckate related salts with large imidazolium cations are described. Out of these, five compounds were crystallized, and their structures determined by single-crystal X-ray structure analyses. They all consisted of discrete anions and cations with octahedrally coordinated Cr(III) ions. In the structures, various hydrogen contacts interconnect the entities to build up hydrogen bonded networks. Thermal investigations showed relatively low melting points for the homoleptic complexes. The compounds with the [Cr(NCS)6]3− anion melt without decomposition and are stable up to 200 K above their melting points. The complex salts with the [Cr(NCS)4L2]− anion, in contrast, start to decompose and lose L molecules (Pyr or Pic) already at the melting point.

Loading...
Thumbnail Image
Item

Low-melting manganese(II)-based ionic liquids: Syntheses, structures, properties and influence of trace impurities

2019, Peppel, Tim, Geppert-Rybczyńska, Monika, Neise, Christin, Kragl, Udo, Köckerling, Martin

The synthesis of more than 10 new magnetic ionic liquids with [MnX4]2− anions, X = Cl, NCS, NCO, is presented. Detailed structural information through single-crystal X-ray diffraction is given for (DMDIm)[Mn(NCS)4], (BnEt3N)2[Mn(NCS)4], and {(Ph3P)2N}2[Mn(NCO4)]·0.6H2O, respectively. All compounds consist of discrete anions and cations with tetrahedrally coordinated Mn(II) atoms. They show paramagnetic behavior as expected for spin-only systems. Melting points are found for several systems below 100 °C classifying them as ionic liquids. Thermal properties are investigated using differential scanning calorimetry (DSC) measurements. The physicochemical properties of density, dynamic viscosity, electrolytic conductivity, and surface tension were measured temperature-dependent of selected samples. These properties are discussed in comparison to similar Co containing systems. An increasing amount of bromide impurity is found to affect the surface tension only up to 3.3%.

Loading...
Thumbnail Image
Item

Photocatalytic Reduction of CO2 by Metal-Free-Based Materials: Recent Advances and Future Perspective

2020, Shen, Huidong, Peppel, Tim, Strunk, Jennifer, Sun, Zhenyu

Photocatalytic CO2 reduction to produce valuable chemicals and fuels using solar energy provides an appealing route to alleviate global energy and environmental problems. Searching for photocatalysts with high activity and selectivity for CO2 conversion is the key to achieving this goal. Among the various proposed photocatalysts, metal-free materials, such as graphene, nitrides, carbides, and conjugated organic polymers, have gained extensive research interest for photocatalytic CO2 reduction, due to their earth abundance, cost-effectiveness, good electrical conductivity, and environmental friendliness. They exhibit prominent catalytic activity, impressive selectivity, and long durability for the conversion of CO2 to solar fuels. Herein, the recent progress on metal-free photocatalysis of CO2 reduction is systematically reviewed. Opportunities and challenges on modification of nonmetallic catalysts to enhance CO2 transformation are presented. Theoretical calculations on possible reduction mechanisms and pathways as well as the potential in situ and operando techniques for mechanistic understanding are also summarized and discussed. Based on the aforementioned discussions, suitable future research directions and perspectives for the design and development of potential nonmetallic photocatalysts for efficient CO2 reduction are provided. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

A novel approach to fabricate load-bearing Ti6Al4V-Barium titanate piezoelectric bone scaffolds by coupling electron beam melting and field-assisted sintering

2022, Riaz, Abdullah, Polley, Christian, Lund, Henrik, Springer, Armin, Seitz, Hermann

A critical-size bone defect in load-bearing areas is a challenging clinical problem in orthopaedic surgery. Titanium alloy (Ti6Al4V) scaffolds have advantages because of their biomechanical stability but lack electrical activity, which hinders their further use. This work is focused on the fabrication of Ti6Al4V-Barium Titanate (BaTiO3) bulk composite scaffolds to combine the biomechanical stability of Ti6Al4V with electrical activity through BaTiO3. For the first time, a hollow cylindrical Ti6Al4V is additively manufactured by electron beam melting and combined with piezoelectric BaTiO3 powder for joint processing in field-assisted sintering. Scanning electron microscope images on the interface of the Ti6Al4V-BaTiO3 composite scaffold showed that after sintering, the Ti6Al4V lattice structure bounded with BaTiO3 matrix without its major deformation. The Ti6Al4V-BaTiO3 scaffold had average piezoelectric constants of (0.63 ± 0.12) pC/N directly after sintering due to partial dipole alignment of the BaTiO3 tetragonal phase, which increased to (4.92 ± 0.75) pC/N after a successful corona poling. Moreover, the nanoindentation values of Ti6Al4V exhibited an average hardness and Young's modulus of (5.9 ± 0.9) GPa and (130 ± 14) GPa, and BaTiO3 showed (4.0 ± 0.6) GPa and (106 ± 10) GPa, respectively. It reveals that the Ti6Al4V is the harder and stiffer part in the Ti6Al4V-BaTiO3 composite scaffold. Such a scaffold has the potential to treat critical-size bone defects in load-bearing areas and guide tissue regeneration by physical stimulation.

Loading...
Thumbnail Image
Item

Combination of chemo- and biocatalysis: Conversion of biomethane to methanol and formic acid

2019, Kunkel, Benny, Seeburg, Dominik, Peppel, Tim, Stier, Matthias, Wohlrab, Sebastian

In the present day, methanol is mainly produced from methane via reforming processes, but research focuses on alternative production routes. Herein, we present a chemo-/biocatalytic oxidation cascade as a novel process to currently available methods. Starting from synthetic biogas, in the first step methane was oxidized to formaldehyde over a mesoporous VOx/SBA-15 catalyst. In the second step, the produced formaldehyde was disproportionated enzymatically towards methanol and formic acid in equimolar ratio by formaldehyde dismutase (FDM) obtained from Pseudomonas putida. Two processing routes were demonstrated: (a) batch wise operation using free formaldehyde dismutase after accumulating formaldehyde from the first step and (b) continuous operation with immobilized enzymes. Remarkably, the chemo-/biocatalytic oxidation cascades generate methanol in much higher productivity compared to methane monooxygenase (MMO) which, however, directly converts methane. Moreover, production steps for the generation of formic acid were reduced from four to two stages. © 2019 by the authors.

Loading...
Thumbnail Image
Item

Novel acridine-based thiosemicarbazones as ‘turn-on' chemosensors for selective recognition of fluoride anion: a spectroscopic and theoretical study

2018-7-4, Isaac, Ibanga Okon, Munir, Iqra, al-Rashida, Mariya, Ali, Syed Abid, Shafiq, Zahid, Islam, Muhammad, Ludwig, Ralf, Ayub, Khurshid, Khan, Khalid Mohammed, Hameed, Abdul

New thiosemicarbazide-linked acridines 3a–c were prepared and investigated as chemosensors for the detection of biologically and environmentally important anions. The compounds 3a–c were found selective for fluoride (F−) with no affinity for other anions, i.e. −OAc, Br−, I−, HSO4−, SO42−, PO43−, ClO3−, ClO4−, CN− and SCN−. Further, upon the gradual addition of a fluoride anion (F−) source (tetrabutylammonium fluoride), a well-defined change in colour of the solution of probes 3a–c was observed. The anion-sensing process was studied in detail via UV–visible absorption, fluorescence and 1H-NMR experiments. Moreover, during the synthesis of acridine probes 3a–c nickel fluoride (NiF2), a rarely explored transition metal fluoride salt, was used as the catalyst. Theoretical studies via density functional theory were also carried out to further investigate the sensing and anion (F−) selectivity pattern of these probes.

Loading...
Thumbnail Image
Item

3D Printing of Piezoelectric Barium Titanate-Hydroxyapatite Scaffolds with Interconnected Porosity for Bone Tissue Engineering

2020, Polley, Christian, Distler, Thomas, Detsch, Rainer, Lund, Henrik, Springer, Armin, Boccaccini, Aldo R., Seitz, Hermann

The prevalence of large bone defects is still a major problem in surgical clinics. It is, thus, not a surprise that bone-related research, especially in the field of bone tissue engineering, is a major issue in medical research. Researchers worldwide are searching for the missing link in engineering bone graft materials that mimic bones, and foster osteogenesis and bone remodeling. One approach is the combination of additive manufacturing technology with smart and additionally electrically active biomaterials. In this study, we performed a three-dimensional (3D) printing process to fabricate piezoelectric, porous barium titanate (BaTiO3) and hydroxyapatite (HA) composite scaffolds. The printed scaffolds indicate good cytocompatibility and cell attachment as well as bone mimicking piezoelectric properties with a piezoelectric constant of 3 pC/N. This work represents a promising first approach to creating an implant material with improved bone regenerating potential, in combination with an interconnected porous network and a microporosity, known to enhance bone growth and vascularization.

Loading...
Thumbnail Image
Item

Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion

2015, Knorr, Anne, Ludwig, Ralf

Direct spectroscopic evidence for H-bonding between like-charged ions is reported for the ionic liquid, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. New infrared bands in the OH frequency range appear at low temperatures indicating the formation of H-bonded cation-cation clusters similar to those known for water and alcohols. Supported by DFT calculations, these vibrational bands can be assigned to attractive interaction between the hydroxyl groups of the cations. The repulsive Coulomb interaction is overcome by cooperative hydrogen bonding between ions of like charge. The transition energy from purely cation-anion interacting configurations to those including cation-cation H-bonds is determined to be 3–4 kJmol−1. The experimental findings and DFT calculations strongly support the concept of anti-electrostatic hydrogen bonds (AEHBs) as recently suggested by Weinhold and Klein. The like-charge configurations are kinetically stabilized with decreasing temperatures.

Loading...
Thumbnail Image
Item

Cationic clustering influences the phase behaviour of ionic liquids

2018, Niemann, Thomas, Zaitsau, Dimitri, Strate, Anne, Villinger, Alexander, Ludwig, Ralf

“Unlike charges attract, but like charges repel”. This conventional wisdom has been recently challenged for ionic liquids. It could be shown that like-charged ions attract each other despite the powerful opposing electrostatic forces. In principle, cooperative hydrogen bonding between ions of like-charge can overcome the repulsive Coulomb interaction while pushing the limits of chemical bonding. The key challenge of this solvation phenomenon is to establish design principles for the efficient formation of clusters of like-charged ions in ionic liquids. This is realised here for a set of well-suited ionic liquids including the same hydrophobic anion but different cations all equipped with hydroxyethyl groups for possible H-bonding. The formation of H-bonded cationic clusters can be controlled by the delocalization of the positive charge on the cations. Strongly localized charge results in cation-anion interaction, delocalized charge leads to the formation of cationic clusters. For the first time we can show, that the cationic clusters influence the properties of ILs. ILs comprising these clusters can be supercooled and form glasses. Crystalline structures are obtained only, if the ILs are dominantly characterized by the attraction between opposite-charged ions resulting in conventional ion pairs. That may open a new path for controlling glass formation and crystallization. The glass temperatures and the phase transitions of the ILs are observed by differential scanning calorimetry (DSC) and infrared (IR) spectroscopy.