Search Results

Now showing 1 - 10 of 10
  • Item
    Microstructure, mechanical properties and machinability of particulate reinforced Al matrix composites: a comparative study between SiC particles and high-entropy alloy particles
    (Amsterdam : Elsevier, 2020) Lu, Tiwen; He, Tianbing; Li, Zixuan; Chen, Hongyu; Han, Xiaoliang; Fu, Zhiqiang; Chen, Weiping
    In this study, 2024Al matrix composites reinforced by SiC particles (SiC-2024Al) and nanocrystalline high-entropy alloy particles (HEA-2024Al) fabricated by powder metallurgy were systematically compared for the first time. There is a significant difference in microstructure and mechanical properties as well as machinability between two kinds of composites. In term of microstructure, when the volume fraction of reinforcements was 10%, both SiC-2024Al and HEA-2024Al composites showed a homogeneous particle distribution in the matrix. With the increase of reinforcement content, HEA-2024Al composites presented denser microstructure than that of SiC-2024Al composites. The composites with 10, 20 and 30 vol.% HEA reinforcements all showed better plasticity than that of the SiC-2024Al composites with same volume fraction of reinforcements, which was related with better particle distribution and interface bonding. However, the strength showed the opposite tendency in the two kinds of composites. Selecting 10SiC-2024Al and 10HEA-2024Al composites as examples to explore the difference in the yield strength of two kinds of composites, it is ascribed to the dislocation punched zones around interface between the Al matrix and reinforcements, which was analyzed in detail by a combination of calculation, nanoindentation tests and finite element analysis. Additionally, HEA-2024Al composites showed better machinability than those of SiC-2024Al composites. This work provides insight into the application of particulate reinforced Al matrix composites.
  • Item
    Two-dimensional membrane as elastic shell with proof on the folds revealed by three-dimensional atomic mapping
    (London : Nature Publishing Group, 2015) Zhao, Jiong; Deng, Qingming; Ly, Thuc Hue; Han, Gang Hee; Sandeep, Gorantla; Rümmeli, Mark H.
    The great application potential for two-dimensional (2D) membranes (MoS2, WSe2, graphene and so on) aroused much effort to understand their fundamental mechanical properties. The out-of-plane bending rigidity is the key factor that controls the membrane morphology under external fields. Herein we provide an easy method to reconstruct the 3D structures of the folded edges of these 2D membranes on the atomic scale, using high-resolution (S)TEM images. After quantitative comparison with continuum mechanics shell model, it is verified that the bending behaviour of the studied 2D materials can be well explained by the linear elastic shell model. And the bending rigidities can thus be derived by fitting with our experimental results. Recall almost only theoretical approaches can access the bending properties of these 2D membranes before, now a new experimental method to measure the bending rigidity of such flexible and atomic thick 2D membranes is proposed.
  • Item
    Production and characterization of brass-matrix composites reinforced with Ni59Zr20Ti16Si2Sn3 glassy particles
    (Basel : MDPI AG, 2012) Kim, J.Y.; Scudino, S.; Kühn, U.; Kim, B.S.; Lee, M.H.; Eckert, J.
    Brass-matrix composites reinforced with 40 and 60 vol.% of Ni59Zr20Ti16Si2Sn3 glassy particles were produced by powder metallurgy. The crystallization behavior and the temperature dependence of the viscosity of the glass reinforcement were studied in detail to select the proper sintering parameters in order to avoid crystallization of the glassy phase during consolidation. The brass-glass powder mixtures were prepared through manual blending as well as by ball milling to analyze the effect of the matrix ligament size on the mechanical properties of the composites. The powder mixtures were then consolidated into highly-dense bulk specimens at temperatures within the supercooled liquid region by hot pressing followed by hot extrusion. The preparation of the powder mixtures has a strong influence on the mechanical behavior of the composites. The strength increases from 500 MPa for pure brass to 740 and 925 MPa for the blended composites with 40 and 60vol.% of glass reinforcement, while the strength increases to 1,240 and 1,640 MPa for the corresponding composites produced by ball milling. Modeling of the mechanical properties indicates that this behavior is related to the reduced matrix ligament size characterizing the milled composites.
  • Item
    Strengthening of Al-Fe3Al composites by the generation of harmonic structures
    (London : Nature Publishing Group, 2018) Shahid, R.N.; Scudino, S.
    Strengthening of alloys can be efficiently attained by the creation of harmonic structures: bimodal microstructures generated by controlled milling of the particulate precursors, which consist of coarse-grained cores embedded in a continuous fine-grained matrix. Here, we extend the concept of harmonic structures to metal matrix composites and analyze the effectiveness of such bimodal microstructures for strengthening composites consisting of a pure Al matrix reinforced with Fe3Al particles. Preferential microstructural refinement limited to the surface of the particles, where the Fe3Al phase is progressively fragmented, occurs during ball milling of the Al-Fe3Al composite powder mixtures. The refined surface becomes the continuous fine-grained matrix that encloses macro-regions with coarser reinforcing particles in the harmonic composites synthesized during subsequent powder consolidation. The generation of the bimodal microstructure has a significant influence on the strength of the harmonic composites, which exceeds that of the conventional material by a factor of 2 while retaining considerable plastic deformation. Finally, modeling of the mechanical properties indicates that the strength of the harmonic composites can be accurately described by taking into account both the volume fraction of reinforcement and the characteristic microstructural features describing the harmonic structure.
  • Item
    Ductile bulk metallic glass by controlling structural heterogeneities
    (London : Nature Publishing Group, 2018) Scudino, S.; Bian, J.J.; Shakur Shahabi, H.; Şopu, D.; Sort, J.; Eckert, J.; Liu, G.
    A prerequisite to utilize the full potential of structural heterogeneities for improving the room-temperature plastic deformation of bulk metallic glasses (BMGs) is to understand their interaction with the mechanism of shear band formation and propagation. This task requires the ability to artificially create heterogeneous microstructures with controlled morphology and orientation. Here, we analyze the effect of the designed heterogeneities generated by imprinting on the tensile mechanical behavior of the Zr52.5Ti5Cu18Ni14.5Al10 BMG by using experimental and computational methods. The imprinted material is elastically heterogeneous and displays anisotropic mechanical properties: strength and ductility increase with increasing the loading angle between imprints and tensile direction. This behavior occurs through shear band branching and their progressive rotation. Molecular dynamics and finite element simulations indicate that shear band branching and rotation originates at the interface between the heterogeneities, where the characteristic atomistic mechanism responsible for shear banding in a homogeneous glass is perturbed.
  • Item
    Structural evolution and strength change of a metallic glass at different temperatures
    (London : Nature Publishing Group, 2016) Tong, X.; Wang, G.; Stachurski, Z.H.; Bednarčík, J.; Mattern, N.; Zhai, Q.J.; Eckert, J.
    The structural evolution of a Zr64.13Cu15.75Ni10.12Al10 metallic glass is investigated in-situ by high-energy synchrotron X-ray radiation upon heating up to crystallization. The structural rearrangements on the atomic scale during the heating process are analysed as a function of temperature, focusing on shift of the peaks of the structure factor in reciprocal space and the pair distribution function and radial distribution function in real space which are correlated with atomic rearrangements and progressing nanocrystallization. Thermal expansion and contraction of the coordination shells is measured and correlated with the bulk coefficient of thermal expansion. The characteristics of the microstructure and the yield strength of the metallic glass at high temperature are discussed aiming to elucidate the correlation between the atomic arrangement and the mechanical properties.
  • Item
    Glass-forming ability, phase formation and mechanical properties of glass-forming Cu-Hf-Zr alloys
    (Amsterdam : Elsevier B.V., 2019) Kosiba, K.; Song, K.; Kühn, U.; Wang, G.; Pauly, S.
    The influence of Hf additions on the glass-forming ability (GFA), phase formation and mechanical properties of Cu50HfxZr50-x (x = 2,5,10,20 at.%) alloys has been systematically investigated. We report on a distinct correlation between phase formation and GFA of Cu50Zr50-based alloys. Increasing additions of Hf reduce the thermal stability of the high-temperature B2 Cu(Hf,Zr) phase, while the thermal stability of the corresponding undercooled melt is enhanced. The GFA of these alloy series gradually raises up to 10 at.% Hf, whereas at 20 at.%Hf, the GFA is drastically lowered, since the B2 Cu(Hf,Zr) phase becomes unstable and the precipitation of the low-temperature equilibrium phases is favoured. This interrelation determines the microstructure and results in the formation of Cu-Hf-Zr-based bulk metallic glass composites. These composites not only show appreciable macroscopic plastic strain, but also high yield strength.
  • Item
    Compositional complexity dependence of dislocation density and mechanical properties in high entropy alloy systems
    (Amsterdam : Elsevier, 2020) Thirathipviwat, P.; Song, G.; Bednarcik, J.; Kühn, U.; Gemming, T.; Nielsch, K.; Han, J.
    This study focuses on a quantitative analysis of dislocation accumulation after cold plastic deformation and mechanical properties of FeNiCoCrMn and TiNbHfTaZr high entropy alloys (HEAs) which are single phase fcc and bcc solid solutions, respectively. In order to study the role of compositional complexity from unary to quinary compositions on dislocation accumulation and mechanical properties after plastic deformation, the single solid solution phase forming sub-alloys of the two HEAs were investigated. All studied samples revealed a large plastic deformability under cold-rotary swaging process by 85–90% area reduction without intermediate annealing. The dislocation density of all studied samples, determined by Williamson-Hall method on synchrotron X-ray diffraction patterns, were between 1014 - 1015 m−2 dependent on the alloy composition. The level of dislocation density after plastic deformation is not only affected by the number of constituent element but the lattice distortion and intrinsic properties in terms of stacking fault energy, modulus misfit, and melting point also impact the dislocation storage. The level of dislocation density determines the level of mechanical properties because of a resistance to dislocation motions. The hardness and yield compressive strength of the studied samples are proportional to the level of dislocation density.
  • Item
    Correlation between atomic structure evolution and strength in a bulk metallic glass at cryogenic temperature
    (London : Nature Publishing Group, 2014) Tan, J.; Wang, G.; Liu, Z.Y.; Bednarčík, J.; Gao, Y.L.; Zhai, Q.J.; Mattern, N.; Eckert, J.
    A model Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) is selected to explore the structural evolution on the atomic scale with decreasing temperature down to cryogenic level using high energy X-ray synchrotron radiation. We discover a close correlation between the atomic structure evolution and the strength of the BMG and find out that the activation energy increment of the concordantly atomic shifting at lower temperature is the main factor influencing the strength. Our results might provide a fundamental understanding of the atomic-scale structure evolution and may bridge the gap between the atomic-scale physics and the macro-scale fracture strength for BMGs.
  • Item
    A tensile deformation model for in-situ dendrite/metallic glass matrix composites
    (London : Nature Publishing Group, 2013) Qiao, J.W.; Zhang, T.; Yang, F.Q.; Liaw, P.K.; Pauly, S.; Xu, B.S.
    In-situ dendrite/metallic glass matrix composites (MGMCs) with a composition of Ti46Zr20V12Cu5Be17 exhibit ultimate tensile strength of 1510 MPa and fracture strain of about 7.6%. A tensile deformation model is established, based on the five-stage classification: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (yield platform), (4) plastic-plastic (work hardening), and (5) plastic-plastic (softening) stages, analogous to the tensile behavior of common carbon steels. The constitutive relations strongly elucidate the tensile deformation mechanism. In parallel, the simulation results by a finite-element method (FEM) are in good agreement with the experimental findings and theoretical calculations. The present study gives a mathematical model to clarify the work-hardening behavior of dendrites and softening of the amorphous matrix. Furthermore, the model can be employed to simulate the tensile behavior of in-situ dendrite/MGMCs.