Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Rotational quantum beat lasing without inversion

2020, Richter, Maria, Lytova, Marianna, Morales, Felipe, Haessler, Stefan, Smirnova, Olga, Spanner, Michael, Ivanov, Misha

In standard lasers, light amplification requires population inversion between an upper and a lower state to break the reciprocity between absorption and stimulated emission. However, in a medium prepared in a specific superposition state, quantum interference may fully suppress absorption while leaving stimulated emission intact, opening the possibility of lasing without inversion. Here we show that lasing without inversion arises naturally during propagation of intense femtosecond laser pulses in air. It is triggered by the combination of molecular ionization and molecular alignment, both unavoidable in intense light fields. The effect could enable inversionless amplification of broadband radiation in many molecular gases, opening unusual opportunities for remote sensing. © 2020 Optical Society of America

Loading...
Thumbnail Image
Item

Generation of crystal-structure transverse patterns via a self-frequency-doubling laser

2013, Yu, H., Zhang, H., Wang, Y., Wang, Z., Wang, J., Petrov, V.

Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories.