Search Results

Now showing 1 - 9 of 9
  • Item
    Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change
    (München : European Geopyhsical Union, 2015) Rumbaur, C.; Thevs, N.; Disse, M.; Ahlheim, M.; Brieden, A.; Cyffka, B.; Duethmann, D.; Feike, T.; Frör, O.; Gärtner, P.; Halik, Ü.; Hill, J.; Hinnenthal, M.; Keilholz, P.; Kleinschmit, B.; Krysanova, V.; Kuba, M.; Mader, S.; Menz, C.; Othmanli, H.; Pelz, S.; Schroeder, M.; Siew, T.F.; Stender, V.; Stahr, K.; Thomas, F.M.; Welp, M.; Wortmann, M.; Zhao, X.; Chen, X.; Jiang, T.; Luo, J.; Yimit, H.; Yu, R.; Zhang, X.; Zhao, C.
    The Tarim River basin, located in Xinjiang, NW China, is the largest endorheic river basin in China and one of the largest in all of Central Asia. Due to the extremely arid climate, with an annual precipitation of less than 100 mm, the water supply along the Aksu and Tarim rivers solely depends on river water. This is linked to anthropogenic activities (e.g., agriculture) and natural and semi-natural ecosystems as both compete for water. The ongoing increase in water consumption by agriculture and other human activities in this region has been enhancing the competition for water between human needs and nature. Against this background, 11 German and 6 Chinese universities and research institutes have formed the consortium SuMaRiO (Sustainable Management of River Oases along the Tarim River; http://www.sumario.de), which aims to create a holistic picture of the availability of water resources in the Tarim River basin and the impacts on anthropogenic activities and natural ecosystems caused by the water distribution within the Tarim River basin. On the basis of the results from field studies and modeling approaches as well as from suggestions by the relevant regional stakeholders, a decision support tool (DST) will be implemented that will then assist stakeholders in balancing the competition for water, acknowledging the major external effects of water allocation to agriculture and to natural ecosystems. This consortium was formed in 2011 and is funded by the German Federal Ministry of Education and Research. As the data collection phase was finished this year, the paper presented here brings together the results from the fields from the disciplines of climate modeling, cryology, hydrology, agricultural sciences, ecology, geoinformatics, and social sciences in order to present a comprehensive picture of the effects of different water availability schemes on anthropogenic activities and natural ecosystems along the Tarim River. The second objective is to present the project structure of the whole consortium, the current status of work (i.e., major new results and findings), explain the foundation of the decision support tool as a key product of this project, and conclude with application recommendations for the region. The discharge of the Aksu River, which is the major tributary of the Tarim, has been increasing over the past 6 decades. From 1989 to 2011, agricultural area more than doubled: cotton became the major crop and there was a shift from small-scale to large-scale intensive farming. The ongoing increase in irrigated agricultural land leads to the increased threat of salinization and soil degradation caused by increased evapotranspiration. Aside from agricultural land, the major natural and semi-natural ecosystems are riparian (Tugai) forests, shrub vegetation, reed beds, and other grassland, as well as urban and peri-urban vegetation. Within the SuMaRiO cluster, focus has been set on the Tugai forests, with Populus euphratica as the dominant tree species, because these forests belong to the most productive and species-rich natural ecosystems of the Tarim River basin. At sites close to the groundwater, the annual stem diameter increments of Populus euphratica correlated with the river runoffs of the previous year. However, the natural river dynamics cease along the downstream course and thus hamper the recruitment of Populus euphratica. A study on the willingness to pay for the conservation of the natural ecosystems was conducted to estimate the concern of the people in the region and in China's capital. These household surveys revealed that there is a considerable willingness to pay for conservation of the natural ecosystems, with mitigation of dust and sandstorms considered the most important ecosystem service. Stakeholder dialogues contributed to creating a scientific basis for a sustainable management in the future.
  • Item
    The LEGATO cross-disciplinary integrated ecosystem service research framework: an example of integrating research results from the analysis of global change impacts and the social, cultural and economic system dynamics of irrigated rice production
    (Heidelberg : Springer Verlag, 2017) Spangenberg, J.H.; Beaurepaire, A.L.; Bergmeier, E.; Burkhard, B.; van Chien, H.; Cuong, L.Q.; Görg, C.; Grescho, V.; Hai, L.H.; Heong, K.L.; Horgan, F.G.; Hotes, S.; Klotzbücher, A.; Klotzbücher, T.; Kühn, I.; Langerwisch, F.; Marion, G.; Moritz, R.F.A.; Nguyen, Q.A.; Ott, J.; Sann, C.; Sattler, C.; Schädler, M.; Schmidt, A.; Tekken, V.; Thanh, T.D.; Thonicke, K.; Türke, M.; Václavík, T.; Vetterlein, D.; Westphal, C.; Wiemers, M.; Settele, J.
    In a cross-disciplinary project (LEGATO) combining inter- and transdisciplinary methods, we quantify the dependency of rice-dominated socio-ecological systems on ecosystem functions (ESF) and the ecosystem services (ESS) the integrated system provides. In the collaboration of a large team including geo- and bioscientists, economists, political and cultural scientists, the mutual influences of the biological, climate and soil conditions of the agricultural area and its surrounding natural landscape have been analysed. One focus was on sociocultural and economic backgrounds, another on local as well as regional land use intensity and biodiversity, and the potential impacts of future climate and land use change. LEGATO analysed characteristic elements of three service strands defined by the Millennium Ecosystem Assessment (MA): (a) provisioning services: nutrient cycling and crop production; (b) regulating services: biocontrol and pollination; and (c) cultural services: cultural identity and aesthetics. However, in line with much of the current ESS literature, what the MA called supporting services is treated as ESF within LEGATO. As a core output, LEGATO developed generally applicable principles of ecological engineering (EE), suitable for application in the context of future climate and land use change. EE is an emerging discipline, concerned with the design, monitoring and construction of ecosystems and aims at developing strategies to optimise ecosystem services through exploiting natural regulation mechanisms instead of suppressing them. Along these lines LEGATO also aims to create the knowledge base for decision-making for sustainable land management and livelihoods, including the provision of the corresponding governance and management strategies, technologies and system solutions.
  • Item
    Revisiting economic burdens of malaria in the face of climate change: a conceptual analysis for Ethiopia
    (Bradford : Emerald, 2020) Yalew, Amsalu Woldie
    Purpose: Climate change affects the geographic and seasonal range of malaria incidence, especially, in poor tropical countries. This paper aims to attempt to conceptualize the potential economic repercussions of such effects with its focus on Ethiopia. Design/methodology/approach: The paper is conceptual and descriptive in its design. It first reviews existing literature and evidence on the economic burdens of malaria, and the impacts of climate change on malaria disease. It then draws the economic implications of the expected malaria risk under the future climate. This is accompanied by a discussion on a set of methods that can be used to quantify the economic effects of malaria with or without climate change. Findings: A review of available evidence shows that climate change is likely to increase the geographic and seasonal range of malaria incidence in Ethiopia. The economic consequences of even a marginal increase in malaria risk will be substantial as one considers the projected impacts of climate change through other channels, the current population exposed to malaria risk and the country’s health system, economic structure and level of investment. The potential effects have the potency to require more household and public spending for health, to perpetuate poverty and inequality and to strain agricultural and regional development. Originality/value: This paper sheds light on the economic implications of climate change impacts on malaria, particularly, in Agrarian countries laying in the tropics. It illustrates how such impacts will interact with other impact channels of climate change, and thus evolve to influence the macro-economy. The paper also proposes a set of methods that can be used to quantify the potential economic effects of malaria. The paper seeks to stimulate future research on this important topic which rather has been neglected. © 2020, Amsalu Woldie Yalew.
  • Item
    Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios
    (Bristol : IOP Publ., 2021) Mueller, Christoph; Franke, James; Jaegermeyr, Jonas; Ruane, Alex C.; Elliott, Joshua; Moyer, Elisabeth; Heinke, Jens; Falloon, Pete D.; Folberth, Christian; Francois, Louis
    Concerns over climate change are motivated in large part because of their impact on human society. Assessing the effect of that uncertainty on specific potential impacts is demanding, since it requires a systematic survey over both climate and impacts models. We provide a comprehensive evaluation of uncertainty in projected crop yields for maize, spring and winter wheat, rice, and soybean, using a suite of nine crop models and up to 45 CMIP5 and 34 CMIP6 climate projections for three different forcing scenarios. To make this task computationally tractable, we use a new set of statistical crop model emulators. We find that climate and crop models contribute about equally to overall uncertainty. While the ranges of yield uncertainties under CMIP5 and CMIP6 projections are similar, median impact in aggregate total caloric production is typically more negative for the CMIP6 projections (+1% to −19%) than for CMIP5 (+5% to −13%). In the first half of the 21st century and for individual crops is the spread across crop models typically wider than that across climate models, but we find distinct differences between crops: globally, wheat and maize uncertainties are dominated by the crop models, but soybean and rice are more sensitive to the climate projections. Climate models with very similar global mean warming can lead to very different aggregate impacts so that climate model uncertainties remain a significant contributor to agricultural impacts uncertainty. These results show the utility of large-ensemble methods that allow comprehensively evaluating factors affecting crop yields or other impacts under climate change. The crop model ensemble used here is unbalanced and pulls the assumption that all projections are equally plausible into question. Better methods for consistent model testing, also at the level of individual processes, will have to be developed and applied by the crop modeling community.
  • Item
    Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements
    (Göttingen : Copernicus GmbH, 2016) Fader, M.; Shi, S.; Von Bloh, W.; Bondeau, A.; Cramer, W.
  • Item
    Climate change, agriculture, and economic development in Ethiopia
    (Basel : MDPI AG, 2018) Yalew, A.W.; Hirte, G.; Lotze-Campen, H.; Tscharaktschiew, S.
    Quantifying the economic effects of climate change is a crucial step for planning adaptation in developing countries. This study assesses the economy-wide and regional effects of climate change-induced productivity and labor supply shocks in Ethiopian agriculture. We pursue a structural approach that blends biophysical and economic models. We consider different crop yield projections and add a regionalization to the country-wide CGE results. The study shows, in the worst case scenario, the effects on country-wide GDP may add up to -8%. The effects on regional value-added GDP are uneven and range from -10% to +2.5%. However, plausible cost-free exogenous structural change scenarios in labor skills and marketing margins may offset about 20-30% of these general equilibrium effects. As such, the ongoing structural transformation in the country may underpin the resilience of the economy to climate change. This can be regarded as a co-benefit of structural change in the country. Nevertheless, given the role of the sector in the current economic structure and the potency of the projected biophysical impacts, adaptation in agriculture is imperative. Otherwise, climate change may make rural livelihoods unpredictable and strain the country's economic progress.
  • Item
    Climate-driven or human-induced: Indicating severe water scarcity in the Moulouya river basin (Morocco)
    (Basel : MDPI AG, 2012) Tekken, V.; Kropp, J.P.
    Many agriculture-based economies are increasingly under stress from climate change and socio-economic pressures. The excessive exploitation of natural resources still represents the standard procedure to achieve socio-economic development. In the area of the Moulouya river basin, Morocco, natural water availability represents a key resource for all economic activities. Agriculture represents the most important sector, and frequently occurring water deficits are aggravated by climate change. On the basis of historical trends taken from CRU TS 2.1, this paper analyses the impact of climate change on the per capita water availability under inclusion of population trends. The Climatic Water Balance (CWB) shows a significant decrease for the winter period, causing adverse effects for the main agricultural season. Further, moisture losses due to increasing evapotranspiration rates indicate problems for the annual water budget and groundwater recharge. The per capita blue water availability falls below a minimum threshold of 500 m3 per year, denoting a high regional vulnerability to increasing water scarcity assuming a no-response scenario. Regional development focusing on the water-intense sectors of agriculture and tourism appears to be at risk. Institutional capacities and policies need to address the problem, and the prompt implementation of innovative water production and efficiency measures is recommended.
  • Item
    Agriculture, livelihoods and climate change in the West African Sahel
    (Heidelberg : Springer Verlag, 2011) Sissoko, K.; van Keulen, H.; Verhagen, J.; Tekken, V.; Battaglini, A.
    The West African Sahel is a harsh environment stressed by a fast-growing population and increasing pressure on the scarce natural resources. Agriculture is the main source of livelihood of the majority of the people living in the area. Increases in temperature and/or modifications in rainfall quantities and distribution will substantially impact on the natural resource on which agriculture depends. The vulnerability of livelihoods based on agriculture is increased and most likely exacerbate and accelerate the current 'downward spiral' of underdevelopment, poverty and environmental degradation. Notably, droughts, a short rainy season and/or very low rainfall will be felt by current systems. To cope with the difficult climatic situation, farm households have developed a range of strategies including selling of animals and on-farm diversification or specialization. At regional level, early warning systems including an operational agro-meteorological information system already provide farmers with crucial information. Substantial political, institutional and financial efforts at national and international level are indispensable for the sustenance of millions of lives. In terms of development, priority needs to be given to adaptation and implementation of comprehensive programs on water management and irrigation, desertification control, development of alternative sources of energy and the promotion of sustainable agricultural practices by farmers.
  • Item
    Towards adaptation of agriculture to climate change in the Mediterranean
    (Heidelberg : Springer Verlag, 2011) Iglesias, A.; Mougou, R.; Moneo, M.; Quiroga, S.
    This study links climate change impacts to the development of adaptation strategies for agriculture on the Mediterranean region. Climate change is expected to intensify the existing risks, particularly in regions with current water scarcity, and create new opportunities for improving land and water management. These risks and opportunities are characterised and interpreted across Mediterranean areas by analysing water scarcity pressures and potential impacts on crop productivity over the next decades. The need to respond to these risks and opportunities is addressed by evaluating an adaptive capacity index that represents the ability of Mediterranean agriculture to respond to climate change. We propose an adaptive capacity index with three major components that characterise the economic capacity, human and civic resources, and agricultural innovation. These results aim to assist stakeholders as they take up the adaptation challenge and develop measures to reduce the vulnerability of the sector to climate change.