Search Results

Now showing 1 - 3 of 3
  • Item
    Cross-polarized common-path temporal interferometry for high-sensitivity strong-field ionization measurements
    (Washington, DC : Soc., 2022) Nie, Zan; Nambu, Noa; Marsh, Kenneth A.; Welch, Eric; Matteo, Daniel; Zhang, Chaojie; Wu, Yipeng; Patchkovskii, Serguei; Morales, Felipe; Smirnova, Olga; Joshi, Chan
    Absolute density measurements of low-ionization-degree or low-density plasmas ionized by lasers are very important for understanding strong-field physics, atmospheric propagation of intense laser pulses, Lidar etc. A cross-polarized common-path temporal interferometer using balanced detection was developed for measuring plasma density with a sensitivity of ∼0.6 mrad, equivalent to a plasma density-length product of ∼2.6 × 1013 cm-2 if using an 800 nm probe laser. By using this interferometer, we have investigated strong-field ionization yield versus intensity for various noble gases (Ar, Kr, and Xe) using 800 nm, 55 fs laser pulses with both linear (LP) and circular (CP) polarization. The experimental results were compared to the theoretical models of Ammosov-Delone-Krainov (ADK) and Perelomov-Popov-Terent'ev (PPT). We find that the measured phase change induced by plasma formation can be explained by the ADK theory in the adiabatic tunneling ionization regime, while PPT model can be applied to all different regimes. We have also measured the photoionization and fractional photodissociation of molecular (MO) hydrogen. By comparing our experimental results with PPT and MO-PPT models, we have determined the likely ionization pathways when using three different pump laser wavelengths of 800 nm, 400 nm, and 267 nm.
  • Item
    SESAM mode-locked Tm:Y2O3 ceramic laser
    (Washington, DC : Soc., 2022) Zhang, Ning; Liu, Shande; Wang, Zhanxin; Liu, Jian; Xu, Xiaodong; Xu, Jun; Wang, Jun; Liu, Peng; Ma, Jie; Shen, Deyuan; Tang, Dingyuan; Lin, Hui; Zhang, Jian; Chen, Weidong; Zhao, Yongguang; Griebner, Uwe; Petrov, Valentin
    We demonstrate a widely tunable and passively mode-locked Tm:Y2O3 ceramic laser in-band pumped by a 1627-nm Raman fiber laser. A tuning range of 318 nm, from 1833 to 2151 nm, is obtained in the continuous-wave regime. The SESAM mode-locked laser produces Fourier-transform-limited pulses as short as 75 fs at ∼ 2.06 µm with an average output power of 0.26 W at 86.3 MHz. For longer pulse durations of 178 fs, an average power of 0.59 W is achieved with a laser efficiency of 29%. This is, to the best of our knowledge, the first mode-locked Tm:Y2O3 laser in the femtosecond regime. The spectroscopic properties and laser performance confirm that Tm:Y2O3 transparent ceramics are a promising gain material for ultrafast lasers at 2 µm.
  • Item
    Diode-pumped sub-50-fs Kerr-lens mode-locked Yb:GdYCOB laser
    (Washington, DC : Soc., 2021) Zeng, Huangjun; Lin, Haifeng; Lin, Zhanglang; Zhang, Lizhen; Lin, Zhoubin; Zhang, Ge; Petrov, Valentin; Loiko, Pavel; Mateos, Xavier; Wang, Li; Chen, Weidong
    We present a sub-50-fs diode-pumped Kerr-lens mode-locked laser employing a novel “mixed” monoclinic Yb:Ca4(Gd,Y)O(BO3)3 (Yb:GdYCOB) crystal as a gain medium. Nearly Fourier-limited pulses as short as 43 fs at 1036.7 nm are generated with an average power of 84 mW corresponding to a pulse repetition rate of ∼70.8 MHz. A higher average power of 300 mW was achieved at the expense of the pulse duration (113 fs) corresponding to an optical-to-optical efficiency of 35.8% representing a record-high value for any Yb-doped borate crystal. Non-phase-matched self-frequency doubling is observed in the mode-locked regime with pronounced strong spectral fringes which originate from two delayed green replicas of the fundamental femtosecond pulses in the time domain.