Search Results

Now showing 1 - 4 of 4
  • Item
    High-brightness broad-area diode lasers with enhanced self-aligned lateral structure
    (Bristol : IOP Publ., 2020) Elatta, M.; Brox, O.; Della Casa, P.; Maaßdorf, A.; Martin, D.; Wenzel, H.; Knigge, A.; Crump, P.
    Broad-area diode lasers with increased brightness and efficiency are presented, which are fabricated using an enhanced self-aligned lateral structure by means of a two-step epitaxial growth process with an intermediate etching step. In this structure, current-blocking layers in the device edges ensure current confinement under the central stripe, which can limit the detrimental effects of current spreading and lateral carrier accumulation on beam quality. It also minimizes losses at stripe edges, thus lowering the lasing threshold and increasing conversion efficiency, while maintaining high polarization purity. In the first realization of this structure, the current block is integrated within an extreme-triple-asymmetric epitaxial design with a thin p-doped side, meaning that the distance between the current block and the active zone can be minimized without added process complexity. Using this configuration, enhanced self-aligned structure devices with 90 µm stripe width and 4 mm resonator length show up to 20% lower threshold current, 21% narrower beam waist, and slightly higher (1.03 ) peak efficiency in comparison to reference devices with the same dimensions, while slope, divergence angle and polarization purity remain almost unchanged. These results correspond to an increase in brightness by up to 25%, and measurement results of devices with varying stripe widths follow the same trend. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Traveling wave analysis of non-thermal far-field blooming in high-power broad-area lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Zeghuzi, Anissa; Radziunas, Mindaugas; Wünsche, Hans-Jürgen; Koester, Jan-Philipp; Wenzel, Hans; Bandelow, Uwe; Knigge, Andrea
    With rising current the lateral far-field angle of high-power broad-area lasers widens (far-field blooming) which can be partly attributed to non-thermal effects due to carrier induced refractive index and gain changes that become the dominant mechanism under pulsed operation. To analyze the non-thermal contribution to far-field blooming we use a traveling wave based model that properly describes the injection of the current into and the diffusion of the carriers within the active region. Although no pre-assumptions regarding the modal composition of the field is made and filamentation is automatically accounted for, the highly dynamic time-dependent optical field distribution can be very well represented by only few modes of the corresponding stationary waveguide equation obtained by a temporal average of the carrier density and field intensity. The reduction of current spreading and spatial holeburning by selecting proper design parameters can substantially improve the beam quality of the laser.
  • Item
    Low-index quantum-barrier single-pass tapered semiconductor optical amplifiers for efficient coherent beam combining
    (Bristol : IOP Publ., 2020) Albrodt, P.; Niemeyer, M.; Elattar, M.; Hamperl, J.; Blume, G.; Ginolas, A.; Fricke, J.; Maaßdorf, A.; Georges, P.; Lucas-Leclin, G.; Paschke, K.; Crump, P.
    The requirements for coherent combination of high power GaAs-based single-pass tapered amplifiers are studied. Changes to the epitaxial layer structure are shown to bring higher beam quality and hence improved combining efficiency for one fixed device geometry. Specifically, structures with large vertical near field and low wave-guiding from the active region show 10% higher beam quality and coherent combining efficiency than reference devices. As a result, coherent combining efficiency is shown to be limited by beam quality, being directly proportional to the power content in the central lobe across a wide range of devices with different construction. In contrast, changes to the in-plane structure did not improve beam quality or combining efficiency. Although poor beam quality does correlate with increased optical intensities near the input aperture, locating monolithically-integrated absorption regions in these areas did not lead to any performance improvement. However, large area devices with subsequently improved cooling do achieve higher output powers. Phase noise can limit coherent combining, but this is shown to be small and independent of device design. Overall, tapered amplifiers are well suited for high power coherent combining applications. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Simulations and analysis of beam quality improvement in spatially modulated broad area edge-emitting devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Radziunas, Mindaugas; Herrero, Ramon; Botey, Muriel; Staliunas, Kestutis
    We simulate and analyze how beam quality improves while being amplified in edge emitting broad area semiconductor amplifiers with a periodic structuring of the electrical contacts, in both longitudinal and lateral directions. A spatio-temporal traveling wave model is used for simulations of the dynamics and nonlinear interactions of the optical fields, induced polarizations and carrier density. In the case of small beam amplification, the optical field can be expanded into few Bloch modes, so that the system is described by a set of ODEs for the evolution of the mode amplitudes. The analysis of such model provides a deep understanding of the impact of the different parameters on amplification and on spatial (angular) filtering of the beam. It is shown that under realistic parameters the twodimensional modulation of the current can lead not only to a significant reduction of the emission divergence, but also to an additional amplification of the emitted field.