Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Production of highly concentrated and hyperpolarized metabolites within seconds in high and low magnetic fields

2019, Korchak, Sergey, Emondts, Meike, Mamone, Salvatore, Blümich, Bernhard, Glöggler, Stefan

Hyperpolarized metabolites are very attractive contrast agents for in vivo magnetic resonance imaging studies enabling early diagnosis of cancer, for example. Real-time production of concentrated solutions of metabolites is a desired goal that will enable new applications such as the continuous investigation of metabolic changes. To this end, we are introducing two NMR experiments that allow us to deliver high levels of polarization at high concentrations (50 mM) of an acetate precursor (55% 13C polarization) and acetate (17% 13C polarization) utilizing 83% para-state enriched hydrogen within seconds at high magnetic field (7 T). Furthermore, we have translated these experiments to a portable low-field spectrometer with a permanent magnet operating at 1 T. The presented developments pave the way for a rapid and affordable production of hyperpolarized metabolites that can be implemented in e.g. metabolomics labs and for medical diagnosis.

Loading...
Thumbnail Image
Item

Non-touching plasma–liquid interaction – where is aqueous nitric oxide generated?

2018, Jablonowski, Helena, Schmidt-Bleker, Ansgar, Weltmann, Klaus-Dieter, von Woedtke, Thomas, Wende, Kristian

Mass transport through graphene is receiving increasing attention due to the potential for molecular sieving. Experimental studies are mostly limited to the translocation of protons, ions, and water molecules, and results for larger molecules through graphene are rare. Here, we perform controlled radical polymerization with surface-anchored self-assembled initiator monolayer in a monomer solution with single-layer graphene separating the initiator from the monomer. We demonstrate that neutral monomers are able to pass through the graphene (via native defects) and increase the graphene defects ratio (Raman ID/IG) from ca. 0.09 to 0.22. The translocations of anionic and cationic monomers through graphene are significantly slower due to chemical interactions of monomers with the graphene defects. Interestingly, if micropatterned initiator-monolayers are used, the translocations of anionic monomers apparently cut the graphene sheet into congruent microscopic structures. The varied interactions between monomers and graphene defects are further investigated by quantum molecular dynamics simulations.

Loading...
Thumbnail Image
Item

The interaction of chondroitin sulfate with a lipid monolayer observed by using nonlinear vibrational spectroscopy

2021, Szekeres, Gergo Peter, Krekic, Szilvia, Miller, Rebecca L., Mero, Mark, Pagel, Kevin, Heiner, Zsuzsanna

The first vibrational sum-frequency generation (VSFG) spectra of chondroitin sulfate (CS) interacting with dipalmitoyl phosphatidylcholine (DPPC) at air–liquid interface are reported here, collected at a laser repetition rate of 100 kHz. By studying the VSFG spectra in the regions of 1050–1450 cm−1, 2750–3180 cm−1, and 3200–3825 cm−1, it was concluded that in the presence of Ca2+ ions, the head groups together with the head-group-bound water molecules in the DPPC monolayer are strongly influenced by the interaction with CS, while the organization of the phospholipid tails remains mostly unchanged. The interactions were observed at a CS concentration below 200 nM, which exemplifies the potential of VSFG in studying biomolecular interactions at low physiological concentrations. The VSFG spectra recorded in the O–H stretching region at chiral polarization combination imply that CS molecules are organized into ordered macromolecular superstructures with a chiral secondary structure.