Search Results

Now showing 1 - 10 of 19
  • Item
    Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke
    (Katlenburg-Lindau : EGU, 2022) Ansmann, Albert; Ohneiser, Kevin; Chudnovsky, Alexandra; Knopf, Daniel A.; Eloranta, Edwin W.; Villanueva, Diego; Seifert, Patric; Radenz, Martin; Barja, Boris; Zamorano, Félix; Jimenez, Cristofer; Engelmann, Ronny; Baars, Holger; Griesche, Hannes; Hofer, Julian; Althausen, Dietrich; Wandinger, Ulla
    A record-breaking stratospheric ozone loss was observed over the Arctic and Antarctica in 2020. Strong ozone depletion occurred over Antarctica in 2021 as well. The ozone holes developed in smoke-polluted air. In this article, the impact of Siberian and Australian wildfire smoke (dominated by organic aerosol) on the extraordinarily strong ozone reduction is discussed. The study is based on aerosol lidar observations in the North Pole region (October 2019-May 2020) and over Punta Arenas in southern Chile at 53.2°S (January 2020-November 2021) as well as on respective NDACC (Network for the Detection of Atmospheric Composition Change) ozone profile observations in the Arctic (Ny-Ålesund) and Antarctica (Neumayer and South Pole stations) in 2020 and 2021. We present a conceptual approach on how the smoke may have influenced the formation of polar stratospheric clouds (PSCs), which are of key importance in the ozone-depleting processes. The main results are as follows: (a) the direct impact of wildfire smoke below the PSC height range (at 10-12 km) on ozone reduction seems to be similar to well-known volcanic sulfate aerosol effects. At heights of 10-12 km, smoke particle surface area (SA) concentrations of 5-7 μm2 cm-3 (Antarctica, spring 2021) and 6-10 μm2 cm-3 (Arctic, spring 2020) were correlated with an ozone reduction in terms of ozone partial pressure of 0.4-1.2 mPa (about 30 % further ozone reduction over Antarctica) and of 2-3.5 mPa (Arctic, 20 %-30 % reduction with respect to the long-term springtime mean). (b) Within the PSC height range, we found indications that smoke was able to slightly increase the PSC particle number and surface area concentration. In particular, a smoke-related additional ozone loss of 1-2 mPa (10 %-20 % contribution to the total ozone loss over Antarctica) was observed in the 14-23 km PSC height range in September-October 2020 and 2021. Smoke particle number concentrations ranged from 10 to 100 cm-3 and were about a factor of 10 (in 2020) and 5 (in 2021) above the stratospheric aerosol background level. Satellite observations indicated an additional mean column ozone loss (deviation from the long-term mean) of 26-30 Dobson units (9 %-10 %, September 2020, 2021) and 52-57 Dobson units (17 %-20 %, October 2020, 2021) in the smoke-polluted latitudinal Antarctic belt from 70-80°S. Copyright:
  • Item
    Ship-based measurements of ice nuclei concentrations over the Arctic, Atlantic, Pacific and Southern oceans
    (Katlenburg-Lindau : EGU, 2020) Welti, André; Bigg, Keith E.; DeMott, Paul J.; Gong, Xianda; Hartmann, Markus; Harvey, Mike; Henning, Silvia; Herenz, Paul; Hill, Thomas C.J.; Hornblow, Blake; Leck, Caroline; Löffler, Mareike; McCluskey, Christina S.; Rauker, Anne Marie; Schmale, Julia; Tatzelt, Christian; van Pinxteren, Manuela; Stratmann, Frank
    Ambient concentrations of ice-forming particles measured during ship expeditions are collected and summarised with the aim of determining the spatial distribution and variability in ice nuclei in oceanic regions. The presented data from literature and previously unpublished data from over 23 months of ship-based measurements stretch from the Arctic to the Southern Ocean and include a circumnavigation of Antarctica. In comparison to continental observations, ship-based measurements of ambient ice nuclei show 1 to 2 orders of magnitude lower mean concentrations. To quantify the geographical variability in oceanic areas, the concentration range of potential ice nuclei in different climate zones is analysed by meridionally dividing the expedition tracks into tropical, temperate and polar climate zones. We find that concentrations of ice nuclei in these meridional zones follow temperature spectra with similar slopes but vary in absolute concentration. Typically, the frequency with which specific concentrations of ice nuclei are observed at a certain temperature follows a log-normal distribution. A consequence of the log-normal distribution is that the mean concentration is higher than the most frequently measured concentration. Finally, the potential contribution of ship exhaust to the measured ice nuclei concentration on board research vessels is analysed as function of temperature. We find a sharp onset of the influence at approximately 36 C but none at warmer temperatures that could bias ship-based measurements. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    CCN measurements at the Princess Elisabeth Antarctica research station during three austral summers
    (Göttingen : Copernicus GmbH, 2019) Herenz, P.; Wex, H.; Mangold, A.; Laffineur, Q.; Gorodetskaya, I.V.; Fleming, Z.L.; Panagi, M.; Stratmann, F.
    For three austral summer seasons (2013-2016, each from December to February) aerosol particles arriving at the Belgian Antarctic research station Princess Elisabeth (PE) in Dronning Maud Land in East Antarctica were characterized. This included number concentrations of total aerosol particles (N CN ) and cloud condensation nuclei (N CCN ), the particle number size distribution (PNSD), the aerosol particle hygroscopicity, and the influence of the air mass origin on N CN and N CCN . In general N CN was found to range from 40 to 6700cm -3 , with a median of 333cm -3 , while N CCN was found to cover a range between less than 10 and 1300cm-3 for supersaturations (SSs) between 0.1% and 0.7%. It is shown that the aerosol is dominated by the Aitken mode, being characterized by a significant amount of small, and therefore likely secondarily formed, aerosol particles, with 94% and 36% of the aerosol particles smaller than 90 and ≈35nm, respectively. Measurements of the basic meteorological parameters as well as the history of the air masses arriving at the measurement station indicate that the station is influenced by both marine air masses originating from the Southern Ocean and coastal areas around Antarctica (marine events - MEs) and continental air masses (continental events - CEs). CEs, which were defined as instances when the air masses spent at least 90% of the time over the Antarctic continent during the last 10 days prior to arrival at the measurements station, occurred during 61% of the time during which measurements were done. CEs came along with rather constant N CN and N CCN values, which we denote as Antarctic continental background concentrations. MEs, however, cause large fluctuations in N CN and N CCN , with low concentrations likely caused by scavenging due to precipitation and high concentrations likely originating from new particle formation (NPF) based on marine precursors. The application of HYSPLIT back trajectories in form of the potential source contribution function (PSCF) analysis indicate that the region of the Southern Ocean is a potential source of Aitken mode particles. On the basis of PNSDs, together with N CCN measured at an SS of 0.1%, median values for the critical diameter for cloud droplet activation and the aerosol particle hygroscopicity parameter ° were determined to be 110nm and 1, respectively. For particles larger than ĝ‰110nm the Southern Ocean together with parts of the Antarctic ice shelf regions were found to be potential source regions. While the former may contribute sea spray particles directly, the contribution of the latter may be due to the emission of sea salt aerosol particles, released from snow particles from surface snow layers, e.g., during periods of high wind speed, leading to drifting or blowing snow. The region of the Antarctic inland plateau, however, was not found to feature a significant source region for aerosol particles in general or page276 for cloud condensation nuclei measured at the PE station in the austral summer.
  • Item
    Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
    (Göttingen : Copernicus Publ., 2020) Levermann, Anders; Winkelmann, Ricarda; Albrecht, Torsten; Goelzer, Heiko; Golledge, Nicholas R.; Greve, Ralf; Huybrechts, Philippe; Jordan, Jim; Leguy, Gunter; Martin, Daniel; Morlighem, Mathieu; Pattyn, Frank; Pollard, David; Quiquet, Aurelien; Rodehacke, Christian; Seroussi, Helene; Sutter, Johannes; Zhang, Tong; Van Breedam, Jonas; Calov, Reinhard; DeConto, Robert; Dumas, Christophe; Garbe, Julius; Gudmundsson, G. Hilmar; Hoffman, Matthew J.; Humbert, Angelika; Kleiner, Thomas; Lipscomb, William H.; Meinshausen, Malte; Ng, Esmond; Nowicki, Sophie M.J.; Perego, Mauro; Price, Stephen F.; Saito, Fuyuki; Schlegel, Nicole-Jeanne; Sun, Sainan; van de Wal, Roderik S.W.
    The sea level contribution of the Antarctic ice sheet constitutes a large uncertainty in future sea level projections. Here we apply a linear response theory approach to 16 state-of-the-art ice sheet models to estimate the Antarctic ice sheet contribution from basal ice shelf melting within the 21st century. The purpose of this computation is to estimate the uncertainty of Antarctica's future contribution to global sea level rise that arises from large uncertainty in the oceanic forcing and the associated ice shelf melting. Ice shelf melting is considered to be a major if not the largest perturbation of the ice sheet's flow into the ocean. However, by computing only the sea level contribution in response to ice shelf melting, our study is neglecting a number of processes such as surface-mass-balance-related contributions. In assuming linear response theory, we are able to capture complex temporal responses of the ice sheets, but we neglect any self-dampening or self-amplifying processes. This is particularly relevant in situations in which an instability is dominating the ice loss. The results obtained here are thus relevant, in particular wherever the ice loss is dominated by the forcing as opposed to an internal instability, for example in strong ocean warming scenarios. In order to allow for comparison the methodology was chosen to be exactly the same as in an earlier study (Levermann et al., 2014) but with 16 instead of 5 ice sheet models. We include uncertainty in the atmospheric warming response to carbon emissions (full range of CMIP5 climate model sensitivities), uncertainty in the oceanic transport to the Southern Ocean (obtained from the time-delayed and scaled oceanic subsurface warming in CMIP5 models in relation to the global mean surface warming), and the observed range of responses of basal ice shelf melting to oceanic warming outside the ice shelf cavity. This uncertainty in basal ice shelf melting is then convoluted with the linear response functions of each of the 16 ice sheet models to obtain the ice flow response to the individual global warming path. The model median for the observational period from 1992 to 2017 of the ice loss due to basal ice shelf melting is 10.2 mm, with a likely range between 5.2 and 21.3 mm. For the same period the Antarctic ice sheet lost mass equivalent to 7.4mm of global sea level rise, with a standard deviation of 3.7mm (Shepherd et al., 2018) including all processes, especially surface-mass-balance changes. For the unabated warming path, Representative Concentration Pathway 8.5 (RCP8.5), we obtain a median contribution of the Antarctic ice sheet to global mean sea level rise from basal ice shelf melting within the 21st century of 17 cm, with a likely range (66th percentile around the mean) between 9 and 36 cm and a very likely range (90th percentile around the mean) between 6 and 58 cm. For the RCP2.6 warming path, which will keep the global mean temperature below 2 °C of global warming and is thus consistent with the Paris Climate Agreement, the procedure yields a median of 13 cm of global mean sea level contribution. The likely range for the RCP2.6 scenario is between 7 and 24 cm, and the very likely range is between 4 and 37 cm. The structural uncertainties in the method do not allow for an interpretation of any higher uncertainty percentiles.We provide projections for the five Antarctic regions and for each model and each scenario separately. The rate of sea level contribution is highest under the RCP8.5 scenario. The maximum within the 21st century of the median value is 4 cm per decade, with a likely range between 2 and 9 cm per decade and a very likely range between 1 and 14 cm per decade. © Author(s) 2020.
  • Item
    A simple stress-based cliff-calving law
    (Göttingen : Copernicus GmbH, 2019) Schlemm, T.; Levermann, A.
    Over large coastal regions in Greenland and Antarctica the ice sheet calves directly into the ocean. In contrast to ice-shelf calving, an increase in calving from grounded glaciers contributes directly to sea-level rise. Ice cliffs with a glacier freeboard larger than ≈100 m are currently not observed, but it has been shown that such ice cliffs are increasingly unstable with increasing ice thickness. This cliff calving can constitute a self-amplifying ice loss mechanism that may significantly alter sea-level projections both of Greenland and Antarctica. Here we seek to derive a minimalist stress-based parametrization for cliff calving from grounded glaciers whose freeboards exceed the 100 m stability limit derived in previous studies. This will be an extension of existing calving laws for tidewater glaciers to higher ice cliffs.

    To this end we compute the stress field for a glacier with a simplified two-dimensional geometry from the two-dimensional Stokes equation. First we assume a constant yield stress to derive the failure region at the glacier front from the stress field within the glacier. Secondly, we assume a constant response time of ice failure due to exceedance of the yield stress. With this strongly constraining but very simple set of assumptions we propose a cliff-calving law where the calving rate follows a power-law dependence on the freeboard of the ice with exponents between 2 and 3, depending on the relative water depth at the calving front. The critical freeboard below which the ice front is stable decreases with increasing relative water depth of the calving front. For a dry water front it is, for example, 75 m. The purpose of this study is not to provide a comprehensive calving law but to derive a particularly simple equation with a transparent and minimalist set of assumptions.

  • Item
    Scaling of instability timescales of Antarctic outlet glaciers based on one-dimensional similitude analysis
    (Göttingen : Copernicus GmbH, 2019) Levermann, A.; Feldmann, J.
    Recent observations and ice-dynamic modeling suggest that a marine ice-sheet instability (MISI) might have been triggered in West Antarctica. The corresponding outlet glaciers, Pine Island Glacier (PIG) and Thwaites Glacier (TG), showed significant retreat during at least the last 2 decades. While other regions in Antarctica have the topographic predisposition for the same kind of instability, it is so far unclear how fast these instabilities would unfold if they were initiated. Here we employ the concept of similitude to estimate the characteristic timescales of several potentially MISI-prone outlet glaciers around the Antarctic coast. Our results suggest that TG and PIG have the fastest response time of all investigated outlets, with TG responding about 1.25 to 2 times as fast as PIG, while other outlets around Antarctica would be up to 10 times slower if destabilized. These results have to be viewed in light of the strong assumptions made in their derivation. These include the absence of ice-shelf buttressing, the one-dimensionality of the approach and the uncertainty of the available data. We argue however that the current topographic situation and the physical conditions of the MISI-prone outlet glaciers carry the information of their respective timescale and that this information can be partially extracted through a similitude analysis.
  • Item
    Modeling Antarctic tides in response to ice shelf thinning and retreat
    (Hoboken, NJ : Blackwell Publishing Ltd, 2014) Rosier, S.H.R.; Green, J.A.M.; Scourse, J.D.; Winkelmann, R.
    Tides play an important role in ice sheet dynamics by modulating ice stream velocity, fracturing, and moving ice shelves and mixing water beneath them. Any changes in ice shelf extent or thickness will alter the tidal dynamics through modification of water column thickness and coastal topography but these will in turn feed back onto the overall ice shelf stability. Here, we show that removal or reduction in extent and/or thickness of the Ross and Ronne-Filchner ice shelves would have a significant impact on the tides around Antarctica. The Ronne-Filchner appears particularly vulnerable, with an increase in M2 amplitude of over 0.5 m beneath much of the ice shelf potentially leading to tidally induced feedbacks on ice shelf/sheet dynamics. These results highlight the importance of understanding tidal feedbacks on ice shelves/streams due to their influence on ice sheet dynamics.
  • Item
    Global warming due to loss of large ice masses and Arctic summer sea ice
    ([London] : Nature Publishing Group UK, 2020) Wunderling, Nico; Willeit, Matteo; Donges, Jonathan F.; Winkelmann, Ricarda
    Several large-scale cryosphere elements such as the Arctic summer sea ice, the mountain glaciers, the Greenland and West Antarctic Ice Sheet have changed substantially during the last century due to anthropogenic global warming. However, the impacts of their possible future disintegration on global mean temperature (GMT) and climate feedbacks have not yet been comprehensively evaluated. Here, we quantify this response using an Earth system model of intermediate complexity. Overall, we find a median additional global warming of 0.43 °C (interquartile range: 0.39−0.46 °C) at a CO2 concentration of 400 ppm. Most of this response (55%) is caused by albedo changes, but lapse rate together with water vapour (30%) and cloud feedbacks (15%) also contribute significantly. While a decay of the ice sheets would occur on centennial to millennial time scales, the Arctic might become ice-free during summer within the 21st century. Our findings imply an additional increase of the GMT on intermediate to long time scales.
  • Item
    The role of Antarctic overwintering teams and their significance for German polar research
    (Göttingen : Copernicus, 2022) Franke, Steven; Eckstaller, Alfons; Heitland, Tim; Schaefer, Thomas; Asseng, Jölund
    Germany has been operating permanently crewed research stations in Antarctica for more than 45 years. The opening of the Georg Forster Station (1976) and Georg von Neumayer Station (1981) initiated a period of continuous environmental monitoring that allowed both the former East Germany and West Germany to become contracting parties in, and achieve consultative status with, the framework of the Antarctic Treaty. This marked a milestone in German polar research. Continuous research at the Neumayer Station III, its two predecessors, and the now-dismantled former German Democratic Republic (GDR) Georg Forster Station is undertaken by teams of so-called "overwinterers", presently with nine members, who stay at the base for longer than an entire Antarctic winter. Their long-Term stay in Antarctica is defined by isolation, separation from civilization, routine work to sustain long-Term scientific observations, and unique personal experiences. This article is dedicated to them and outlines their part and role in the German Antarctic research landscape.
  • Item
    Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets
    (Hoboken, NJ : Wiley, 2021) Payne, Antony J.; Nowicki, Sophie; Abe‐Ouchi, Ayako; Agosta, Cécile; Alexander, Patrick; Albrecht, Torsten; Asay‐Davis, Xylar; Aschwanden, Andy; Barthel, Alice; Bracegirdle, Thomas J.; Calov, Reinhard; Chambers, Christopher; Choi, Youngmin; Cullather, Richard; Cuzzone, Joshua; Dumas, Christophe; Edwards, Tamsin L.; Felikson, Denis; Fettweis, Xavier; Galton‐Fenzi, Benjamin K.; Goelzer, Heiko; Gladstone, Rupert; Golledge, Nicholas R.; Gregory, Jonathan M.; Greve, Ralf; Hattermann, Tore; Hoffman, Matthew J.; Humbert, Angelika; Huybrechts, Philippe; Jourdain, Nicolas C.; Kleiner, Thomas; Munneke, Peter Kuipers; Larour, Eric; Le clec'h, Sebastien; Lee, Victoria; Leguy, Gunter; Lipscomb, William H.; Little, Christopher M.; Lowry, Daniel P.; Morlighem, Mathieu; Nias, Isabel; Pattyn, Frank; Pelle, Tyler; Price, Stephen F.; Quiquet, Aurélien; Reese, Ronja; Rückamp, Martin; Schlegel, Nicole‐Jeanne; Seroussi, Hélène; Shepherd, Andrew; Simon, Erika; Slater, Donald; Smith, Robin S.; Straneo, Fiammetta; Sun, Sainan; Tarasov, Lev; Trusel, Luke D.; Van Breedam, Jonas; Wal, Roderik; Broeke, Michiel; Winkelmann, Ricarda; Zhao, Chen; Zhang, Tong; Zwinger, Thomas
    Projections of the sea level contribution from the Greenland and Antarctic ice sheets (GrIS and AIS) rely on atmospheric and oceanic drivers obtained from climate models. The Earth System Models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) generally project greater future warming compared with the previous Coupled Model Intercomparison Project phase 5 (CMIP5) effort. Here we use four CMIP6 models and a selection of CMIP5 models to force multiple ice sheet models as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We find that the projected sea level contribution at 2100 from the ice sheet model ensemble under the CMIP6 scenarios falls within the CMIP5 range for the Antarctic ice sheet but is significantly increased for Greenland. Warmer atmosphere in CMIP6 models results in higher Greenland mass loss due to surface melt. For Antarctica, CMIP6 forcing is similar to CMIP5 and mass gain from increased snowfall counteracts increased loss due to ocean warming.