Search Results

Now showing 1 - 10 of 32
  • Item
    Simultaneous observations of a Mesospheric Inversion Layer and turbulence during the ECOMA-2010 rocket campaign
    (Göttingen : Copernicus, 2013) Szewczyk, A.; Strelnikov, B.; Rapp, M.; Strelnikova, I.; Baumgarten, G.; Kaifler, N.; Dunker, T.; Hoppe, U.-P.
    From 19 November to 19 December 2010 the fourth and final ECOMA rocket campaign was conducted at Andøya Rocket Range (69 N, 16 E) in northern Norway. We present and discuss measurement results obtained during the last rocket launch labelled ECOMA09 when simultaneous and true common volume in situ measurements of temperature and turbulence supported by ground-based lidar observations reveal two Mesospheric Inversion Layers (MIL) at heights between 71 and 73 km and between 86 and 89 km. Strong turbulence was measured in the region of the upper inversion layer, with the turbulent energy dissipation rates maximising at 2 W kg-1. This upper MIL was observed by the ALOMAR Weber Na lidar over the period of several hours. The spatial extension of this MIL as observed by the MLS instrument onboard AURA satellite was found to be more than two thousand kilometres. Our analysis suggests that both observed MILs could possibly have been produced by neutral air turbulence.
  • Item
    Climatologies and long-term changes in mesospheric wind and wave measurements based on radar observations at high and mid latitudes
    (Göttingen : Copernicus GmbH, 2019) Wilhelm, S.; Stober, G.; Brown, P.
    We report on long-term observations of atmospheric parameters in the mesosphere and lower thermosphere (MLT) made over the last 2 decades. Within this study, we show, based on meteor wind measurement, the long-term variability of winds, tides, and kinetic energy of planetary and gravity waves. These measurements were done between the years 2002 and 2018 for the high-latitude location of Andenes (69.3°N, 16°E) and the mid-latitude locations of Juliusruh (54.6°N, 13.4°E) and Tavistock (43.3°N, 80.8°W). While the climatologies for each location show a similar pattern, the locations differ strongly with respect to the altitude and season of several parameters. Our results show annual wind tendencies for Andenes which are toward the south and to the west, with changes of up to 3°m s-1 per decade, while the mid-latitude locations show smaller opposite tendencies to negligible changes. The diurnal tides show nearly no significant long-term changes, while changes for the semidiurnal tides differ regarding altitude. Andenes shows only during winter a tidal weakening above 90°km, while for the Canadian Meteor Orbit Radar (CMOR) an enhancement of the semidiurnal tides during the winter and a weakening during fall occur. Furthermore, the kinetic energy for planetary waves showed strong peak values during winters which also featured the occurrence of sudden stratospheric warming. The influence of the 11-year solar cycle on the winds and tides is presented. The amplitudes of the mean winds exhibit a significant amplitude response for the zonal component below 82°km during summer and from November to December between 84 and 95°km at Andenes and CMOR. The semidiurnal tides (SDTs) show a clear 11-year response at all locations, from October to November. © 2019 by ASME.
  • Item
    Long-term studies of mesosphere and lower-thermosphere summer length definitions based on mean zonal wind features observed for more than one solar cycle at middle and high latitudes in the Northern Hemisphere
    (Katlenburg, Lindau : Copernicus, 2022) Jaen, Juliana; Renkwitz, Toralf; Chau, Jorge L.; He, Maosheng; Hoffmann, Peter; Yamazaki, Yosuke; Jacobi, Christoph; Tsutsumi, Masaki; Matthias, Vivien; Hall, Chris
    Specular meteor radars (SMRs) and partial reflection radars (PRRs) have been observing mesospheric winds for more than a solar cycle over Germany (g1/4g54g gN) and northern Norway (g1/4g69g gN). This work investigates the mesospheric mean zonal wind and the zonal mean geostrophic zonal wind from the Microwave Limb Sounder (MLS) over these two regions between 2004 and 2020. Our study focuses on the summer when strong planetary waves are absent and the stratospheric and tropospheric conditions are relatively stable. We establish two definitions of the summer length according to the zonal wind reversals: (1) the mesosphere and lower-thermosphere summer length (MLT-SL) using SMR and PRR winds and (2) the mesosphere summer length (M-SL) using the PRR and MLS. Under both definitions, the summer begins around April and ends around middle September. The largest year-to-year variability is found in the summer beginning in both definitions, particularly at high latitudes, possibly due to the influence of the polar vortex. At high latitudes, the year 2004 has a longer summer length compared to the mean value for MLT-SL as well as 2012 for both definitions. The M-SL exhibits an increasing trend over the years, while MLT-SL does not have a well-defined trend. We explore a possible influence of solar activity as well as large-scale atmospheric influences (e.g., quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO), major sudden stratospheric warming events). We complement our work with an extended time series of 31 years at middle latitudes using only PRR winds. In this case, the summer length shows a breakpoint, suggesting a non-uniform trend, and periods similar to those known for ENSO and QBO.
  • Item
    Atomic oxygen number densities in the mesosphere–lower thermosphere region measured by solid electrolyte sensors onWADIS-2
    (Katlenburg-Lindau : Copernicus, 2019) Eberhart, Martin; Löhle, Stefan; Strelnikov, Boris; Hedin, Jonas; Khaplanov, Mikhail; Fasoulas, Stefanos; Gumbel, Jörg; Lübken, Franz-Josef; Rapp, Markus
    Absolute profiles of atomic oxygen number densities with high vertical resolution have been determined in the mesosphere-lower thermosphere (MLT) region from in situ measurements by several rocket-borne solid electrolyte sensors. The amperometric sensors were operated in both controlled and uncontrolled modes and with various orientations on the foredeck and aft deck of the payload. Calibration was based on mass spectrometry in a molecular beam containing atomic oxygen produced in a microwave discharge. The sensor signal is proportional to the number flux onto the electrodes, and the mass flow rate in the molecular beam was additionally measured to derive this quantity from the spectrometer reading. Numerical simulations provided aerodynamic correction factors to derive the atmospheric number density of atomic oxygen from the sensor data. The flight results indicate a preferable orientation of the electrode surface perpendicular to the rocket axis. While unstable during the upleg, the density profiles measured by these sensors show an excellent agreement with the atmospheric models and photometer results during the downleg of the trajectory. The high spatial resolution of the measurements allows for the identification of small-scale variations in the atomic oxygen concentration. © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    VHF antenna pattern characterization by the observation of meteor head echoes
    (München : European Geopyhsical Union, 2017) Renkwitz, Toralf; Schult, Carsten; Latteck, Ralph
    The Middle Atmosphere Alomar Radar System (MAARSY) with its active phased array antenna is designed and used for studies of phenomena in the mesosphere and lower atmosphere. The flexible beam forming and steering combined with a large aperture array allows for observations with a high temporal and angular resolution. For both the analysis of the radar data and the configuration of experiments, the actual radiation pattern needs to be known. For that purpose, various simulations as well as passive and active experiments have been conducted. Here, results of meteor head echo observations are presented, which allow us to derive detailed information of the actual radiation pattern for different beam-pointing positions and the current health status of the entire radar. For MAARSY, the described method offers robust beam pointing and width estimations for a minimum of a few days of observations.
  • Item
    Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km
    (München : European Geopyhsical Union, 2010) Baumgarten, Gerd
    A direct detection Doppler lidar for measuring wind speed in the middle atmosphere up to 80 km with 2 h resolution was implemented in the ALOMAR Rayleigh/Mie/Raman lidar (69° N, 16° E). The random error of the line of sight wind is about 0.6 m/s and 10 m/s at 49 km and 80 km, respectively. We use a Doppler Rayleigh Iodine Spectrometer (DoRIS) at the iodine line 1109 (~532.260 nm). DoRIS uses two branches of intensity cascaded channels to cover the dynamic range from 10 to 100 km altitude. The wind detection system was designed to extend the existing multi-wavelength observations of aerosol and temperature performed at wavelengths of 355 nm, 532 nm and 1064 nm. The lidar uses two lasers with a mean power of 14 W at 532 nm each and two 1.8 m diameter tiltable telescopes. Below about 49 km altitude the accuracy and time resolution is limited by the maximum count rate of the detectors used and not by the number of photons available. We report about the first simultaneous Rayleigh temperature and wind measurements by lidar in the strato- and mesosphere on 17 and 23 January 2009.
  • Item
    VAHCOLI, a new concept for lidars: technical setup, science applications, and first measurements
    (Katlenburg-Lindau : European Geosciences Union, 2021) Lübken, Franz-Josef; Höffner, Josef
    A new concept for a cluster of compact lidar systems named VAHCOLI (Vertical And Horizontal COverage by LIdars) is presented, which allows for the measurement of temperatures, winds, and aerosols in the middle atmosphere (10 110 km) with high temporal and vertical resolution of minutes and some tens of meters, respectively, simultaneously covering horizontal scales from a few hundred meters to several hundred kilometers ( four-dimensional coverage ). The individual lidars ( units ) being used in VAHCOLI are based on a diode-pumped alexandrite laser, which is currently designed to detect potassium (D 770 nm), and on sophisticated laser spectroscopy measuring all relevant frequencies (seeder laser, power laser, backscattered light) with high temporal resolution (2 ms) and high spectral resolution applying Doppler-free spectroscopy. The frequency of the lasers and the narrowband filter in the receiving system are stabilized to typically 10 100 kHz, which is a factor of roughly 105 smaller than the Doppler-broadened Rayleigh signal. Narrowband filtering allows for the measurement of Rayleigh and/or resonance scattering separately from the aerosol (Mie) signal during both night and day. Lidars used for VAHCOLI are compact (volume: 1m3) and multi-purpose systems which employ contemporary electronic, optical, and mechanical components. The units are designed to autonomously operate under harsh field conditions in remote locations. An error analysis with parameters of the anticipated system demonstrates that temperatures and line-of-sight winds can be measured from the lower stratosphere to the upper mesosphere with an accuracy of (0.1 5)K and (0.1 10)ms1, respectively, increasing with altitude. We demonstrate that some crucial dynamical processes in the middle atmosphere, such as gravity waves and stratified turbulence, can be covered by VAHCOLI with sufficient temporal, vertical, and horizontal sampling and resolution. The four-dimensional capabilities of VAHCOLI allow for the performance of time-dependent analysis of the flow field, for example by employing Helmholtz decomposition, and for carrying out statistical tests regarding, for example, intermittency and helicity. The first test measurements under field conditions with a prototype lidar were performed in January 2020. The lidar operated successfully during a 6-week period (night and day) without any adjustment. The observations covered a height range of 5 100 km and demonstrated the capability and applicability of this unit for the VAHCOLI concept.
  • Item
    Quasi 18 h wave activity in ground-based observed mesospheric H2O over Bern, Switzerland
    (Katlenburg-Lindau : EGU, 2017-12-18) Lainer, Martin; Hocke, Klemens; Rüfenacht, Rolf; Kämpfer, Niklaus
    Observations of oscillations in the abundance of middle-atmospheric trace gases can provide insight into the dynamics of the middle atmosphere. Long-term, high-temporal-resolution and continuous measurements of dynamical tracers within the strato- and mesosphere are rare but would facilitate better understanding of the impact of atmospheric waves on the middle atmosphere. Here we report on water vapor measurements from the ground-based microwave radiometer MIAWARA (MIddle Atmospheric WAter vapor RAdiometer) located close to Bern during two winter periods of 6 months from October to March. Oscillations with periods between 6 and 30 h are analyzed in the pressure range 0.02–2 hPa. Seven out of 12 months have the highest wave amplitudes between 15 and 21 h periods in the mesosphere above 0.1 hPa. The quasi 18 h wave signature in the water vapor tracer is studied in more detail by analyzing its temporal evolution in the mesosphere up to an altitude of 75 km. Eighteen-hour oscillations in midlatitude zonal wind observations from the microwave Doppler wind radiometer WIRA (WInd RAdiometer) could be identified within the pressure range 0.1–1 hPa during an ARISE (Atmospheric dynamics Research InfraStructure in Europe)-affiliated measurement campaign at the Observatoire de Haute-Provence (355 km from Bern) in France in 2013. The origin of the observed upper-mesospheric quasi 18 h oscillations is uncertain and could not be determined with our available data sets. Possible drivers could be low-frequency inertia-gravity waves or a nonlinear wave–wave interaction between the quasi 2-day wave and the diurnal tide.
  • Item
    Ozone–gravity wave interaction in the upper stratosphere/lower mesosphere
    (Katlenburg-Lindau : EGU, 2022) Gabriel, Axel
    The increase in amplitudes of upward propagating gravity waves (GWs) with height due to decreasing density is usually described by exponential growth. Recent measurements show some evidence that the upper stratospheric/lower mesospheric gravity wave potential energy density (GWPED) increases more strongly during the daytime than during the nighttime. This paper suggests that ozone-gravity wave interaction can principally produce such a phenomenon. The coupling between ozone-photochemistry and temperature is particularly strong in the upper stratosphere where the time-mean ozone mixing ratio decreases with height. Therefore, an initial ascent (or descent) of an air parcel must lead to an increase (or decrease) in ozone and in the heating rate compared to the environment, and, hence, to an amplification of the initial wave perturbation. Standard solutions of upward propagating GWs with linear ozone-temperature coupling are formulated, suggesting amplitude amplifications at a specific level during daytime of 5ĝ€¯% to 15ĝ€¯% for low-frequency GWs (periods ≥4ĝ€¯h), as a function of the intrinsic frequency which decreases if ozone-temperature coupling is included. Subsequently, the cumulative amplification during the upward level-by-level propagation leads to much stronger GW amplitudes at upper mesospheric altitudes, i.e., for single low-frequency GWs, up to a factor of 1.5 to 3 in the temperature perturbations and 3 to 9 in the GWPED increasing from summer low to polar latitudes. Consequently, the mean GWPED of a representative range of mesoscale GWs (horizontal wavelengths between 200 and 1100ĝ€¯km, vertical wavelengths between 3 and 9ĝ€¯km) is stronger by a factor of 1.7 to 3.4 (2 to 50ĝ€¯Jĝ€¯kg-1, or 2ĝ€¯% to 50ĝ€¯% in relation to the observed order of 100ĝ€¯Jĝ€¯kg-1, assuming initial GW perturbations of 1 to 2ĝ€¯K in the middle stratosphere). Conclusively, the identified process might be an important component in the middle atmospheric circulation, which has not been considered up to now.
  • Item
    Zonal asymmetries in middle atmospheric ozone and water vapour derived from Odin satellite data 2001-2010
    (Göttingen : Copernicus, 2011) Gabriel, A.; Körnich, H.; Lossow, S.; Peters, D.H.W.; Urban, J.; Murtagh, D.
    Stationary wave patterns in middle atmospheric ozone (O3) and water vapour (H2O) are an important factor in the atmospheric circulation, but there is a strong gap in diagnosing and understanding their configuration and origin. Based on Odin satellite data from 2001 to 2010 we investigate the stationary wave patterns in O3 and H2O as indicated by the seasonal long-term means of the zonally asymmetric components O3* Combining double low line O3-[O3] and H2O* Combining double low line H2O-[H2O] ([O3], [H2O]: zonal means). At mid-and polar latitudes we find a pronounced wave one pattern in both constituents. In the Northern Hemisphere, the wave patterns increase during autumn, maintain their strength during winter and decay during spring, with maximum amplitudes of about 10-20 % of the zonal mean values. During winter, the wave one in O3* shows a maximum over the North Pacific/Aleutians and a minimum over the North Atlantic/Northern Europe and a double-peak structure with enhanced amplitude in the lower and in the upper stratosphere. The wave one in H2O* extends from the lower stratosphere to the upper mesosphere with a westward shift in phase with increasing height including a jump in phase at upper stratosphere altitudes. In the Southern Hemisphere, similar wave patterns occur mainly during southern spring. By comparing the observed wave patterns in O 3* and H2O3* with a linear solution of a steady-state transport equation for a zonally asymmetric tracer component we find that these wave patterns are primarily due to zonally asymmetric transport by geostrophically balanced winds, which are derived from observed temperature profiles. In addition temperature-dependent photochemistry contributes substantially to the spatial structure of the wave pattern in O 3* . Further influences, e.g., zonal asymmetries in eddy mixing processes, are discussed.