Search Results

Now showing 1 - 5 of 5
  • Item
    Money makes our world go round - funding landscape for polar early-career scientists in Germany
    (Göttingen : Copernicus, 2022) Nicola, Lena; Loebel, Erik; Zuhr, Alexandra M.
    A lot of things in life need money and so does polar science: money is needed to participate in conferences, undertake fieldwork campaigns or pay for salaries, such as in PhD projects or permanent research positions. To give an overview on the general funding landscape for polar early-career scientists in Germany, APECS Germany (the German National Committee of the Association of Polar Early Career Scientists, APECS) has started to host a list of grant, fellowship and other funding opportunities at https://apecs-germany.de/funding/ (last access: 15 October 2022). This is visualized in Fig. . Once a suitable funding scheme has been found, grant writing requires good preparation, a well-structured and written proposal, and several back-up plans.
  • Item
    Tobac 1.2: Towards a flexible framework for tracking and analysis of clouds in diverse datasets
    (Katlenburg-Lindau : Copernicus, 2019) Heikenfeld, Max; Marinescu, Peter J.; Christensen, Matthew; Watson-Parris, Duncan; Senf, Fabian; van den Heever, Susan C.; Stier, Philip
    We introduce tobac (Tracking and Object-Based Analysis of Clouds), a newly developed framework for tracking and analysing individual clouds in different types of datasets, such as cloud-resolving model simulations and geostationary satellite retrievals. The software has been designed to be used flexibly with any two-or three-dimensional timevarying input. The application of high-level data formats, such as Iris cubes or xarray arrays, for input and output allows for convenient use of metadata in the tracking analysis and visualisation. Comprehensive analysis routines are provided to derive properties like cloud lifetimes or statistics of cloud properties along with tools to visualise the results in a convenient way. The application of tobac is presented in two examples. We first track and analyse scattered deep convective cells based on maximum vertical velocity and the threedimensional condensate mixing ratio field in cloud-resolving model simulations. We also investigate the performance of the tracking algorithm for different choices of time resolution of the model output. In the second application, we show how the framework can be used to effectively combine information from two different types of datasets by simultaneously tracking convective clouds in model simulations and in geostationary satellite images based on outgoing longwave radiation. The tobac framework provides a flexible new way to include the evolution of the characteristics of individual clouds in a range of important analyses like model intercomparison studies or model assessment based on observational data. © 2019 Author(s).
  • Item
    Visualization of Tensor Fields in Mechanics
    (Oxford : Wiley-Blackwell, 2021) Hergl, Chiara; Blecha, Christian; Kretzschmar, Vanessa; Raith, Felix; Günther, Fabian; Stommel, Markus; Jankowai, Jochen; Hotz, Ingrid; Nagel, Thomas; Scheuermann, Gerik
    Tensors are used to describe complex physical processes in many applications. Examples include the distribution of stresses in technical materials, acting forces during seismic events, or remodeling of biological tissues. While tensors encode such complex information mathematically precisely, the semantic interpretation of a tensor is challenging. Visualization can be beneficial here and is frequently used by domain experts. Typical strategies include the use of glyphs, color plots, lines, and isosurfaces. However, data complexity is nowadays accompanied by the sheer amount of data produced by large-scale simulations and adds another level of obstruction between user and data. Given the limitations of traditional methods, and the extra cognitive effort of simple methods, more advanced tensor field visualization approaches have been the focus of this work. This survey aims to provide an overview of recent research results with a strong application-oriented focus, targeting applications based on continuum mechanics, namely the fields of structural, bio-, and geomechanics. As such, the survey is complementing and extending previously published surveys. Its utility is twofold: (i) It serves as basis for the visualization community to get an overview of recent visualization techniques. (ii) It emphasizes and explains the necessity for further research for visualizations in this context.
  • Item
    Review: Visual analytics of climate networks
    (Göttingen : Copernicus GmbH, 2015) Nocke, T.; Buschmann, S.; Donges, J.F.; Marwan, N.; Schulz, H.-J.; Tominski, C.
  • Item
    Reproducible research through persistently linked and visualized data
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Drees, Bastian; Kraft, Angelina; Koprucki, Thomas
    The demand of reproducible results in the numerical simulation of opto-electronic devices or more general in mathematical modeling and simulation requires the (long-term) accessibility of data and software that were used to generate those results. Moreover, to present those results in a comprehensible manner data visualizations such as videos are useful. Persistent identifier can be used to ensure the permanent connection of these different digital objects thereby preserving all information in the right context. Here we give an overview over the state-of-the art of data preservation, data and software citation and illustrate the benefits and opportunities of enhancing publications with visual simulation data by showing a use case from opto-electronics.